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1 Introduction

Linearity is a foundational assumption in structural time series modeling. For example,

large classes of macroeconomic models in modern New Keynesian theory can be reduced

to linear forms via linearization techniques. This often justifies the use of the linear time

series toolbox from a theoretical point of view. The seminal work of Sims (1980) on vector

autoregressive (VAR) models brought the study of dynamic economic relationships into

focus within the macro-econometric literature, for which the estimation and analysis of

impulse response functions (IRFs) is key (Hamilton, 1994b, Lütkepohl, 2005, Kilian and

Lütkepohl, 2017). The local projection (LP) approach of Jordà (2005) has also gained

popularity as an alternative, thanks to its flexibility and ease of implementation.

Linear models, however, are limited in the kind of effects that they can describe.

Asymmetries in monetary policy and non-proportional shock effects are now commonly

studied. However, most works construct essentially parametric nonlinear specifications.

For example, Tenreyro and Thwaites (2016) studying both sign and size effects of mone-

tary policy (MP) shocks using censoring and cubic transformations, respectively. Caggiano

et al. (2017), Pellegrino (2021) and Caggiano et al. (2021) use multiplicative interacted

VAR models to estimate effects of uncertainty and MP shocks. From a macro-finance

perspective, Forni et al. (2023a,b) study the economic effects of financial shocks following

the quadratic VMA specification (Debortoli et al., 2020). Gambetti et al. (2022) study

news shocks asymmetries by imposing that news changes enter an autoregressive model

through a threshold map. Parametric nonlinear specifications are also common prescrip-

tions in time-varying models (Auerbach and Gorodnichenko, 2012, Caggiano et al., 2015)

and state-dependent models (Ramey and Zubairy, 2018).

In this paper, we aim to design a semiparametric, structural nonlinear time series

modeling and estimation framework with explicit theoretical properties. Our structural

framework is an extension of the block-recursive form from Gonçalves et al. (2021); we

combine it with the uniform sieve estimation theory of Chen and Christensen (2015)

within a general physical dependence setup (Wu, 2005). Under appropriate regularity
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assumptions, we show that a two-step semiparametric series estimation procedure is able

to consistently recover the structural model in a uniform sense. Since we ultimately wish to

study impulse responses, our theory also encompasses guarantees for estimated nonlinear

IRFs: Nonlinear impulse response function estimates are asymptotically consistent and,

thanks to an iterative algorithm, straightforward to compute in practice.

To illustrate the validity of our proposed methodology, we first provide simulation

evidence. With realistic sample sizes, the efficiency costs of the semiparametric procedure

are small compared to correctly-specified parametric estimates. A second set of simula-

tions demonstrates that whenever the nonlinear parametric model is mildly misspecified

the large-sample bias is large, while for semiparametric estimates it is negligible. We then

evaluate how the IRFs computed with the new method compare with the ones from two

previous empirical exercises. In a small, quarterly model of the US macroeconomy, we

find that the parametric nonlinear and nonlinear appear to underestimate by intensity

the GDP responses by 13% and 16%, respectively, after a large exogenous monetary pol-

icy shock. Moreover, sieve responses achieve maximum impact a year before their linear

counterparts. Then, we evaluate the effects of interest rate uncertainty on US output,

prices, and unemployment following Istrefi and Mouabbi (2018). In this exercise, the im-

pact on industrial production of a one-deviation increase in uncertainty is approximately

54% stronger according to semiparametric IRFs than the comparable linear specification.

These findings suggest that structural responses based on linear specifications might be

appreciably underestimating shock effects.

A few similar efforts to the one we undertake in this paper have been made thus

far. Gourieroux and Lee (2023) provide a framework for nonparametric kernel estimation

and inference of IRFs via local projections, although they primarily work in the one-

dimensional, single lag case. The seminal work of Jordà (2005) suggested the so-called

“flexible local projection” approach based on the Volterra expansion. There are multiple

issues with this method: First, the Volterra expension is not formally justified, nor is its

truncation, which is key in studying its properties (Sirotko-Sibirskaya et al., 2020, Mova-
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hedifar and Dickhaus, 2023). Second, the flexible LP proposal is effectively equivalent

to adding mixed polynomial terms to a linear regression, meaning it is a semiparametric

method and must be analyzed as such. As we deal with nonlinear impulse responses,

we briefly mention here the Generalized IRF (GIRF) approach originated by Koop et al.

(1996), Potter (2000) and Gourieroux and Jasiak (2005), of which Teräsvirta et al. (2010)

provide a textbook treatment. GIRFs are defined with more sophisticated conditioning

sets than standard IRFs. Yet, a core issue with GIRFs is that they do not explicitly ad-

dress the problem of structural identification (Kilian and Lütkepohl, 2017). In this line of

work, Kanazawa (2020) proposed to use radial basis function neural networks to estimate

nonlinear reduced-form GIRFs for the US economy.

The remainder of this paper is organized as follows. Section 2 provides the general

framework for the structural model. Section 3 describes the two-step semiparametric esti-

mation strategy and Section 4 discusses nonlinear impulse response function computation,

validity and consistency. In Section 5 we give a brief overview of simulation results, while

Section 6 contains the empirical analyses. Finally, Section 7 concludes. All proofs and ad-

ditional material can be found in the Supplementary Material. With regard to notation:

scalar and vector random variables are denoted in capital or Greek letters, e.g. Yt or ϵt,

while realization are shown in lowercase Latin letters, e.g. yt. For a process tYtutPZ, we

write Yt:s “ pYt, Yt`1, . . . , Ys´1, Ysq, as well as Y˚:t “ p. . . , Yt´2, Yt´1, Ytq for the left-infinite

history and Yt:˚ “ pYt, Yt`1, Yt`2, . . .q for its right-infinite history. The same notation is

also used for random variable realizations. For a matrix A P Rdˆd where d ě 1, ∥A∥ is

the spectral norm, ∥A∥8 is the supremum norm and ∥A∥r for 0 ă r ă 8 is the r-operator

norm. For a random vector or matrix, we will use ∥ ¨ ∥Lr to denote the associated Lr

norm.
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2 Model Framework

In this section, we introduce the general nonlinear time series model. In terms of structural

shocks identification, the idea is straightforward: One must choose a scalar series, Xt, to

be the structural variable identifying shocks, and explicitly model the dynamic effects on

the remaining data, vector Yt. This will enable the derivation of economically meaningful

(structural) impulse responses due to an exogenous shock impacting Xt.

2.1 General Model

This paper focuses on the family of nonlinear autoregressive models of the form

Xt “ µ1 ` A12pLqYt´1 ` A11pLqXt´1 ` u1t,

Yt “ µ2 ` G2pYt´1, . . . , Yt´p, Xt, Xt´1, . . . , Xt´pq ` u2t.

(1)

where Xt P X Ď R and Yt P Y Ď RdY are scalar and dY -dimensional time series, respec-

tively, ut “ pu1t, u1
2tq

1 P U Ď Rd are innovations, d “ 1 ` dY , G2 : R1`pd ÞÑ R is a generic

nonlinear map, and A12pLq and A11pLq are lag polynomials (Lütkepohl, 2005). We let

Zt :“ pXt, Y 1
t q1 P Rd be the full data vector. Let us provide some examples for the model

classes nested by (1).

Example 2.1 (Linear VAR). In the simplest case, G2pYt´1, . . . , Yt´p, Xt, Xt´1, . . . , Xt´pq “

A22pLqYt´1 ` A21pLqXt, and we recover the class of linear vector autoregressive models.

Example 2.2 (Additively separable model). When G2pYt´1, . . . , Yt´p, Xt, Xt´1, . . . , Xt´pq “

řp
i“1 Gi,22pYt´iq`

řp
j“0 Gj,21pXt´jq, model (1) is additively separable (Fan and Yao, 2003).

Example 2.3 (Nonlinear impact model). An even more parsimonious class than the

additively separable one is the one studied in Gonçalves et al. (2021), which may be

informally termed the “nonlinear impact model class”, where

Yt “ µ2 ` A22pLqYt´1 `

p
ÿ

j“0
Gj,21pXt´jq ` u2t.
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A useful equivalent representation of the above equation for Yt is

Yt “ µ2 ` A22pLqYt´1 ` A21pLqXt´1 `

p
ÿ

j“0

>
Gj,21pXt´jq ` u2t,

where now to identify nonlinear functions >
Gj,21 : R ÞÑ RdY , 0 ď j ď p, we require that

constant and linear factors be not included at indices j ě 1. To make this more compact,

write

Zt “ µ ` ApLqZt´1 `
>
GpLqXt ` ut, where >

GpLq :“
«

0
>
G0,21 `

>
G1,21L ` . . . `

>
Gp,21L

p

ff

,

with the minor abuse of notation that >
G2pLq :“ >

G0,21 ` . . . `
>
Gp,21L

p is now intended as

a functional lag polynomial, meaning >
G2pLqXt ”

řp
j“0

>
Gj,21pXt´jq.1

2.2 Structural Framework

Model (1) involves only reduced-form innovations u1t and u2t, meaning additional as-

sumptions are necessary in order to provide any structural interpretation. Many such

assumptions have been devised in the macroeconomic literature, but few can be directly

applied to nonlinear models (Kilian and Lütkepohl, 2017). Here, we follow the block-

recursive identification strategy outlined in Gonçalves et al. (2021) and originally due to

Kilian and Vigfusson (2011).

From (1) we derive

Xt “ µ1 ` A12pLqYt´1 ` A11pLqXt´1 ` u1t,

Yt “ µ2 ` A22pLqYt´1 ` A21pLqXt´1 `
>
G2pYt´1:t´p, Xt:t´pq ` u2t,

where, without loss of generality, we have assumed (as in Example 2.3) that we can

separate the linear and non-linear (>
G2) components from G2. In general, it can be the

case that µ2 “ 0, A22pLq “ 0 or A21pLq “ 0 if e.g. G2 is strictly nonlinear. In vector

1The choice to use a functional matrix notation is due to the ease of writing multivariate additive
nonlinear models such as (4) in a manner consistent with standard formalisms of linear VAR models,
following again e.g. Lütkepohl (2005).
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form:

Zt “ µ ` ApLqZt´1 `
>
GpZt:t´pq ` ut, where >

GpZt:t´pq :“
«

0
>
G2pYt´1:t´p, Xt:t´pq

ff

. (2)

We can now formalize the structural specification of our model.

Assumption 1. There exist (i) a vector B21
0 P RdY and a matrix B22

0 P RdY ˆdY such that
«

1 0
B21

0 B22
0

ff

“: B´1
0

is invertible and has unit diagonal, and (ii) mutually independent innovations sequences

tϵ1tutPZ, ϵ1t P E1 Ď R, and tϵ2tutPZ, ϵ2t P E2 Ď RdY , such that
«

ϵ1t

ϵ2t

ff

i.i.d.
„

˜«

0
0

ff

,

«

Σ1 0
0 Σ2

ff¸

,

where Σ1 ą 0 and Σ2 is a diagonal positive definite matrix so that

Xt “ µ1 ` A12pLqYt´1 ` A11pLqXt´1 ` ϵ1t,

Yt “ µ2 ` A22pLqYt´1 ` A21pLqXt´1 `
>
G2pYt´1:t´p, Xt:t´pq ` B21

0 ϵ1t ` B22
0 ϵ2t,

(3)

where u1t ” ϵ1t, u2t :“ B21
0 ϵ1t ` B22

0 ϵ2t and thus ut “ B´1
0 ϵt for ϵt “ pϵ1, ϵ1

2q1 P E Ď Rd.

Remark 2.1. Assumption 1 follows Gonçalves et al. (2021) closely. By design, one does

not need to identify the model fully, meaning that fewer assumptions on Zt and ϵt are

needed to estimate the individual structural effects of ϵ1t on Yt. This comes at the cost of

not being able to simultaneously study structural effects with respect to shocks impacting

ϵ2t.

Note that inverting B´1
0 gives

B0 “

«

1 0
´B0,12 B0,22

ff

,

and multiplying both sides we find

B0Zt “ b ` BpLqZt´1 `
>
F pZt:t´pq ` ϵt, (4)

where b “ pb1, b1
2q1 P Rd and >

F pZt:t´pq “ p0,
>
F 2pZt:t´pqq1 for >

F 2 : R1`pdY ÞÑ RdY , F2 “
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B0,22
>
G2. In practice, to estimate the model’s coefficients, we will leverage (3). This latter

form was termed the pseudo-reduced form by Gonçalves et al. (2021).

We observe that >
G2pYt´1:t´p, Xt:t´pq is correlated with u2t through B21

0 ϵ1t. As Xt

depends linearly on ϵ1t, if B21
0 “ 0 and >

G2pYt´1:t´p, Xt:t´pq is not independent of Xt,

there is endogeneity. Gonçalves et al. (2021) address the issue by proposing a two-step

estimation procedure wherein one proxies for ϵ1t by means of regression residuals pϵt. As

we show in Section 3 below, this approach does also allow consistent semiparametric

estimation.

Remark 2.2. (Moving Average Identification). Forni et al. (2023a,b) work with an al-

ternative nonlinear structural identification framework to the block-recursive form. Their

approach follows Debortoli et al. (2020), and is based on a vector MA representation.

Under appropriate assumptions, the structural model studied by Forni et al. (2023a) is

Zt “ µ ` ApLqZt ` Q0F pϵ1tq ` B0ϵt, (5)

where ϵt are independent innovations with zero mean and identity covariance, and ϵ1t

identifies the shocks of interest. QpLq and BpLq are both linear lag polynomials, and

F pxq “ x2 in their baseline specification. For (5) to overlap with (3), one must impose that

(i) Xt is exogenous and independently distributed and (ii) only ϵ1t has nonlinear effects.

We emphasize that, if innovation sequence ϵ1t is assumed to be observable, applying our

results to the framework of Debortoli et al. (2020) is straightforward.

2.3 Structural Nonlinear Impulse Responses

Starting from pseudo-reduced equations (3), we begin by assuming that the linear autore-

gressive component is stable.

Assumption 2. The roots of detpId ´ ApLqLq “ 0 are outside the complex unit circle.

This is a rather weak assumption which will enable us to write impulse responses in
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a manner that can yield simplifications for additively separable models.2 Then, letting

ΨpLq “ pId ´ ApLqLq´1, one can write

Zt “ η ` ΘpLqϵt ` ΓpZt:˚q, (6)

where µ :“ Ψp1qpµ1, µ1
2q1, ΘpLq :“ ΨpLqB´1

0 and ΓpZt:˚q :“ ΨpLqp0,
>
G2pYt´1:t´p, Xt:t´pq1q1.

We emphasize that the nonlinear term ΓpZt:˚q generally depends on the entire history of

the process Zt, as ΨpLq is an infinite-order MA polynomial. To formally define impulse re-

sponses, it is useful to partition the polynomial ΘpLq according to ΘpLq :“ rΘ¨1pLqΘ¨2pLqs

, where Θ¨1pLq represents the first column of matrices in ΘpLq, and Θ¨2pLq the remaining

dY columns.

Given impulse δ P R at time t, define the shocked innovation process as ϵ1spδq “ ϵs

for s “ t and ϵ1tpδq “ ϵ1t ` δ, as well as the shocked structural variable as Zspδq “ Zs for

s ă t and Zspδq “ Xspϵs:t`1, ϵt ` δ, ϵt´1:˚q for s ě t. Further, let

Zt`h :“ η ` Θ¨1pLqϵ1t`h ` Θ¨2pLqϵ2t`h ` ΓpZt:˚q,

Zt`hpδq :“ η ` Θ¨1pLqϵ1t`hpδq ` Θ¨2pLqϵ2t`h ` ΓpZt:˚pδqq,

be the time-t baseline and shocked series, respectively. Then

IRFhpδq “ E rZt`hpδq ´ Zt`hs (7)

is the unconditional impulse response at horizon h due to shock δ. The difference is

directly Zt`hpδq ´ Zt`h “ Θh,¨1δ ` ΓpZt:˚pδqq ´ ΓpZt:˚q, hence

IRFhpδq “ Θh,¨1δ ` E rΓpZt:˚pδqq ´ ΓpZt:˚qs . (8)

Remark 2.3. In additively separable models, it is simple to see that ΓpZt:˚q is also

additively separable over lags of Zt. Accordingly, the baseline and shock series have an

additive form, as terms with time indices s ă t remain unaffected by the shock. Therefore,

2Stability of the linear VAR component is neither necessary nor sufficient for ensuring stability and
stationarity of the entire nonlinear process, c.f. Assumption 9 1 in Section 3 below.
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(8) reduces to

IRFhpδq “ Θh,¨1δ ` E rΓ0pZt`hpδqq ´ Γ0pZt`hqs ` . . . ` E rΓhpZtpδqq ´ ΓhpZtqs . (9)

Coefficients Γj are again functional, and still cannot be collected across Xt`jpδq and Xt`j.

Closed-form computation of nonlinear IRFs is highly non-trivial. Even in the separa-

ble case (9), while one can linearly separate expectations in the impulse response formula,

terms E rΓjZt`jpδq ´ ΓjZt`js for 0 ď j ď h cannot be meaningfully simplified further.

Moreover, these expectations involve nonlinear functions of lags of Zt and are impractical

to derive explicitly. To avoid working with ΘpLq and ΓpLq, we now present an iterative

algorithm which allows one to easily and efficiently compute nonlinear IRFs.

Proposition 2.1. For any h “ 0, 1, . . . , H, with H ě 1 fixed, if impulse response IRFhpδq

is finite and well-defined, it can be computed with the following steps:

(i) For j “ 0, let Xtpδq “ Xt`δ and Ytpδq “ µ2`G2pYt´1, . . . , Yt´p, Xtpδq, Xt´1, . . . , Xt´pq`

B21
0 pϵ1t ` δq ` ξ2t.

(ii) For j “ 1, . . . , h, let

Xt`jpδq “ µ1 ` A12pLqYt`j´1pδq ` A11pLqXt`j´1pδq ` ϵ1t`j,

Yt`jpδq “ µ2 ` G2pYt´1pδq, . . . , Yt´ppδq, Xtpδq, Xt´1pδq, . . . , Xt´ppδqq ` B21
0 ϵ1t`j ` ξ2t`j.

where Xtpδq and Ytpδq are the shocked sequences determined by forward iteration

after time t, equaling baseline sequences Xt and Yt at lags before t, respectively.

Setting Zt`jpδq “ pXtpδq, Ytpδqq1, it holds IRFhpδq “ ErZt`jpδq ´ Zt`js.

Proposition 2.1 follows directly from the definition of the unconditional impulse re-

sponse (7) combined with a direct forward iteration of (3), sidestepping the explicit

MA(8) formulation in (8). This approach dispenses from the need to simulate inno-

vations tϵt`ju
h´1
j“1 , as the joint distribution of tXt`h´1, Xt`j´1, . . . , Xtu already contains

all relevant path information. It also improves on the algorithm originally proposed in
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Gonçalves et al. (2021): Their computations for step (ii) are recursive, whereas Proposi-

tion 2.1 gives iterative forms.

When the model is estimated from data, for residuals pϵ1t and pξ2t it trivially holds

Xt “ pµ1 ` pA12pLqYt´1 ` pA11pLqXt´1 ` pϵ1t,

Yt “ pµ2 ` pG2pYt´1, . . . , Yt´p, Xt, Xt´1, . . . , Xt´pq ` pB21
0 pϵ1t ` pξ2t.

In practice, this means that one can numerically construct the shocked sequence as

pXt`jpδq “ pµ1 ` pA12pLqpYt`j´1pδq ` pA11pLq pXt`j´1pδq ` pϵ1t`j,

pYt`jpδq “ pµ2 ` pG2ppYt´1pδq, . . . , pYt´ppδq, pXtpδq, pXt´1pδq, . . . , pXt´ppδqq ` pB21
0 pϵ1t`j ` pξ2t`j,

for j “ 1, . . . , h where pXtpδq “ Xt ` δ, pXt´s “ Xt´s for all s ě 1, and similarly for pYtpδq.

3 Estimation

To discuss estimation, we will rewrite the equations in (3) with some minor reordering as

Xt “ Π1
1W1t ` ϵ1t,

Yt “ Π1
2W2t ` ξ2t,

(10)

where ξ2t “ B22
0 ϵ2t, Π1 :“ pη1, A1,11, ¨ ¨ ¨ , Ap,11, A1

1,12, ¨ ¨ ¨ , A1
p,12q1, Π1 P R1`pd,

Π2 :“

»

—

–

G1,2p¨q

µ2 ¨ ¨ ¨ B21
0

GdY ,2p¨q

fi

ffi

fl

1

,

W1t :“ p1, Xt´1, . . . , Xt´p, Y 1
t´1, . . . , Y 1

t´pq1 P Rpd, and W2t :“ p1, Xt, Xt´1, . . . , Xt´p, Y 1
t´1, . . . , Y 1

t´p,

ϵ1tq
1 P R2`pd. With a slight abuse of notation, similar to the one used in Example 2.3, we

have written the functional terms in Π2 as a “vector product”, G2 ¨ pX 1
t:t´p, Y 1

t´1:t´pq1 ”

G2pXt:t´p, Yt´1:t´pq, where G2 is a vector of functions, one for each component of Yt.

Whenever Π1 “ 0, W2t is an infeasible vector of regressors due to term ϵ1t. To

estimate Π2, one can use xW2t “ p1, Xt, Z 1
t´1:t´p,pϵ1tq

1 instead, which contains generated

regressors in the form of residual pϵ1t. A valid two-step estimation procedure (Gonçalves
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et al., 2021) is:

1. Regress Xt on W1t to get estimate pΠ1, compute residuals pϵ1t “ Xt ´ pΠ1
1W1t;

2. Semiparametrically regress Yt on xW2t to get estimate pΠ2.

There are many ways to implement Step 2, given that the literature on non- and semi-

parametric regression is mature. We rely on the sieve framework of Chen and Christensen

(2015) as the workhorse to derive the main theoretical results. The sieve framework is

known to be rich, encompassing e.g. neural networks (Chen and White, 1999, Shen et al.,

2023).

3.1 Semiparametric Series Estimation

The semiparametric regression problem of Step 2 is more readily analyzed by working on

each component of Yt. For i P t1, . . . , dY u, consider

Yt,i “ µ2,i ` G2,ipYt´1, . . . , Yt´p, Xt, Xt´1, . . . , Xt´pq ` B21
0,iϵ1t ` ξ2t,i. (11)

Let then π2,i :“ rµ2,i, G2,i, B21
0,is

1. The regression equation for π2,i is thus Yi “ π1
2,iW2 `

ξ2i, where Yi “ pY1,i, . . . , Yn,iq
1 and ξ2i “ pξ2t,1, . . . , ξ2t,nq1. The estimation target is the

conditional expectation π2,ipwq “ ErYt,i |W2t “ ws under the assumption Erξ2t,i |W2ts “ 0.

Assume that G2,i P Λ, where Λ is a sufficiently regular function class to be specified in

the following. Given a collection b1κ, . . . , bκκ of κ ě 1 basis functions belonging to sieve Bκ,

define bκp¨q :“ pb1κp¨q, . . . , bκκp¨qq
1 and Bκ :“

`

bκpY0:1´p, X1:1´pq, . . . , bκpYn´1:n´p, Xn:n´pq
˘1.

For univariate functions, one can directly apply spline, wavelet and Fourier sieves; in the

multivariate case, tensor-product sieves are straightforward generalizations (Chen and

Christensen, 2015). To construct the final semiparametric sieve for π2,i, let bπ,1K , . . . , bπ,KK

be the sieve basis in R ˆ Bκ ˆ R for κ ě 1 and K “ 2 ` κ given by bπ,1KpW2tq “ 1,

bπ,ℓKpW2tq “ bℓκpYt´1:t´p, Xt:t´pq and bπ,KKpW2tq “ ϵ1t. for 2 ď ℓ ď κ ` 1. Note that

K, the overall size of the sieve, grows linearly in κ, which itself controls the effective

dimension of the nonparametric component of the sieve, bπ,2K , . . . , bπ,pκ`1qK . Introducing
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bK
π pwq :“ pbπ,1Kpwq, . . . , bπ,KKpwqq1 and Bπ :“ pbK

π pW21q, . . . , bK
π pW2nqq1, the generally

infeasible least squares series estimator pπ˚
2,ipwq is given by pπ˚

2,ipwq “ bK
π pwq1pB1

πBπq´1B1
KYi.

Similarly, the feasible series regression matrix pBπ :“ pbK
π pxW21q, . . . , bK

π pxW2nqq1 yields the

feasible least squares series estimator, pπ2,ipwq “ bK
π pwq1p pB1

π
pBπq´1

pB1
KYi.

To further streamline notation, wherever it does not lead to confusion, we will let

π2 be a generic coefficient vector belonging to tπ2,iu
p
i“1, as well as define pπ2, Y and u2

accordingly.

3.2 Distributional and Sieve Assumptions

To derive asymptotic consistency results, we begin by stating conditions on the basic

probability structure of the model.

Assumption 3. tZtutPZ is a strictly stationary and ergodic time series.

Assumption 4. Xt P X Ă R, Yt P Y Ă RdY and ϵt P E Ă Rd for all t P Z, where X , Y

and E are compact, convex sets with nonempty interior.

Assumption 3 follows both Gonçalves et al. (2021) and Chen and Christensen (2015).

Note that, as W2t depends only on Xt:t´p, Yt´1:t´p and ϵ1t, the entries of ξ2t in (10) are

independent of W2t, so that Eru2it | W2ts “ 0.

Assumption 4 implies that Xt, Yt, as well as ϵt are bounded random variables. In

(semi-)nonparametric estimation, imposing that Xt be bounded almost surely is a stan-

dard assumption. Since lags of Yt and innovations ϵt contribute linearly to all components

of Zt, it follows that they too must be bounded. In practice Assumption 4 is not par-

ticularly restrictive, as many credibly stationary economic series often have reasonable

implicit (e.g. inflation) or explicit bounds (e.g. employment rate).

Remark 3.1. Bounded support assumptions are relatively uncommon in time series

econometrics, given the extensive literature available on linear models (Hamilton, 1994a,

Lütkepohl, 2005, Kilian and Lütkepohl, 2017, Stock and Watson, 2016). Unbounded re-

gressors are significantly more complex to handle when working in the nonparametric
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setting. Chen and Christensen (2015) do work in weighted sup-norms, but their uniform

results are stated only under a compact domain assumption. Avoiding Assumption 4 can

be achieved with a change in the model’s equations – e.g. the lags of Yt only effect Xt

via bounded functions – but this avenue also restricts the model. Establishing a gen-

eral (uniform) theory of nonparametric regressions with unbounded data domains, on the

other hand, is a complex question. For kernel, partitioning and nearest-neighbor meth-

ods and i.i.d. data, a handful of papers develop results in L1 and L2 norms, see Kohler

et al. (2006, 2009) and Kohler and Krzyżak (2013). For wavelet estimators in the i.i.d.

regression setting, Zhou (2022) provided the first sup-norm result in Besov spaces, if with

suboptimal rates. Construction of a comprehensive nonparametric framework to handle

non-independent, unbounded data should thus be considered an important objective of

future research.

Without loss of generality, let Y “ r0, 1sdY and X “ r0, 1s.

Assumption 5. The unconditional densities of Yt and Xt are uniformly bounded away

from zero and infinity over Y and X , respectively.

Assumption 6. For all 1 ď i ď dY the restriction of G2,i to Y p ˆ X 1`p ” r0, 1s1`pd

belongs to the Hölder class Λspr0, 1s1`pdq of smoothness s ě 1.

Assumptions 5 and 6 are classical in the nonparametric regression literature. Let

then W2 Ă Rd be the domain of W2t. By assumption, W2 is compact and convex and

is given by the direct product W2 “ t1u ˆ Y p ˆ X 1`p ˆ E1,where E1 is the domain of

structural innovations ϵ1t i.e. E ” E1 ˆ E2.

Assumption 7. Define ζK,n :“ supwPW2∥bK
π pwq∥ and λK,n :“ rλminpEr bK

π pW2tqb
K
π pW2tq

1 sqs´1{2.

It holds: (i) there exist ω1, ω2 ě 0 s.t. supwPW2∥∇bK
π pwq∥ À nω1Kω2 ; (ii) there exist

ω1 ě 0, ω2 ą 0 s.t. ζK,n À nω1Kω2 ; (iii) λminpEr bKpW2tqb
KpW2tq

1 sq ą 0 for all K and n.

Assumption 7 provides mild regularity conditions on the families of sieves that can

be used for the series estimator. More generally, letting W2 be compact and rectangular
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makes Assumption 7 hold for commonly used basis functions (Chen and Christensen,

2015). In particular, Assumption 7(i) holds with ω1 “ 0 since the domain is fixed over

the sample size. What is also needed is that the nonparametric components of the sieve

given by bπ,1K , . . . , bπ,KK are able to approximate G2,i well enough. Throughout this

paper, we will consider specific families of sieves, which are known to fulfill the regularity

conditions spelled out in Assumption 7. The approximation properties of these sieves are

well understood (Chen, 2007).3

Assumption 8. Sieve Bκ belongs to BSplpκ, W2, rq or Wavpκ, W2, rq, the tensor B-spline

and tensor wavelet sieve, respectively, of degree r over W2, with r ě maxts, 1u.

We definerbK
π pwq :“ Er bK

π pW2tqb
K
π pW2tq

1 s´1{2 bK
π pwq and rBπ :“

`

rbK
π pW21q, . . . ,rbK

π pW2nq
˘1

to be the orthonormalized vector of basis functions and the orthonormalized regression

matrix, respectively. To derive uniform converges rates under dependence, we require

that the Gram matrix of orthonormalized sieve converges to the identity.

Assumption 9. It holds that ∥p rB1
π
rBπ{nq ´ IK∥ “ oP p1q.

Chen and Christensen (2015) introduced Assumption 9 as a key ingredient for their

proofs, while also showing that it holds whenever tW2tutPZ is either an exponential or al-

gebraic β-mixing process. Unfortunately, mixing conditions are opaque in terms of their

connection to the model specification, as they rely on bounding the worst-case “indepen-

dence gap” between probability events (see Appendix A). We extend their approach to

the case of geometrically decaying physical dependence, a metric proposed by Wu (2005),

a setting where many estimation and inference results have been derived, see for example

Wu et al. (2010), Wu (2011), Chen et al. (2016) and references within.

Assumption 9 1. Let tZtutPZ be such that we can write Zt`h “ ΦphqpZt, ϵt`1:t`hq for all

h ě 1, nonlinear maps Φphq and innovations tϵtutPZ. Then, for r ě 2, there exists constants

a1 ą 0, a2 ą 0 and τ P p0, 1s such that it holds

sup
t

∥∥∥ Zt`h ´ Φphq
pZ 1

t, ϵt`1:t`hq
∥∥∥

Lr
ď a1 expp´a2 hτ

q.

3See also Chen (2013), Belloni et al. (2015) for additional discussion and examples of sieve families.
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Assumption 9 is subsumed by Assumption 9 1. Using physical dependence measure,

we argue that it is also possible to swap mixing conditions with more explicit, primitive

conditions derived exclusively in terms of model specification (1). In particular, for specific

semiparametric model specifications, it is possibly to verify Assumption 9 1 directly by

leveraging stability/contractivity theory of dynamic systems. We refer the reader to

Appendix A for an in-depth discussion of dependence and physical conditions.

3.3 Uniform Convergence and Consistency

We can now state our main result: The two-step estimation procedure for (10) provides

consistent estimates.

Theorem 3.1. Let tZtutPZ be determined by structural model (4). Under Assumptions 1,

3, 4, 5, 6, 7, 8 and 9 1, let pΠ1 and pΠ2 be the least squares and two-step semiparametric

series estimators for Π1 and Π2, respectively. Then, ∥pΠ1 ´ Π1∥8 “ OP pn´1{2 q and

∥pΠ2 ´ Π2∥8 ď OP

ˆ

ζK,nλK,n
K
?

n

˙

` ∥pΠ˚
2 ´ Π2∥8,

where pΠ˚
2 is the infeasible series estimator involving ϵ1t.

The proof is a moderate extension of Theorem 1 in Chen and Christensen (2015): Sup-

norm bounds for ∥pΠ˚
2 ´ Π2∥8 follow immediately from their Lemma 2.3 and Lemma 2.4.

In particular, choosing the optimal nonparametric rate K — pn{ logpnqqd{p2s`dq for the

infeasible estimator would yield ∥pΠ˚
2 ´ Π2∥8 “ OP ppn{ logpnqq´s{p2s`dqq. The condition

for consistency in Theorem 3.1 reduces to K3{2{
?

n “ op1q, since for B-spline and wavelet

sieves λK,n À 1 and ζK,n À
?

K. It is simple to show that, if for the feasible estimator
pΠ2 the same rate pn{ logpnqqd{p2s`dq is chosen for K, consistency is fulfilled assuming e.g.

s ě 1 and d “ 1, such as in the setting of the additively separable model in Example 2.3.

A number of methods can be used to select K in practice: Cross-validation, generalized

cross-validation and Mallow’s criterion are commonly employed (Li and Racine, 2009).

In the case of piece-wise splines, once size is selected, knots can be chosen to be the K
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uniform quantiles of the data. In simulations and applications, for simplicity, we select

sieve sizes manually and locate knots approximately following empirical quantiles.

4 Impulse Response Analysis

Once the model’s coefficients are estimated, derivation of nonlinear impulse responses

must be addressed. To ensure compatibility with bounded support assumptions, we in-

troduce an extension of the classical IRF definition, termed relaxed impulse response

function. We then show that nonlinear relaxed IRFs can be consistently estimated, and

uniformly so with respect to shocks picked within a compact range.

4.1 Relaxed Shocks

Under Assumptions 4 and 5, the standard construction of impulse responses following

Section 2.3 is, unfortunately, improper. This is immediately seen by noticing that, at

impact, Xtpδq “ Xt ` δ, meaning that PpXtpδq R X q ą 0 since there is a translation of

size δ in the support of Xt. To address this problem, we introduce an extension to the

standard additive shock that is used to define impulse responses.

We begin by defining mean-shift shocks, that is, shocks such that the distribution

of time t innovations is shifted to have mean δ, while retaining compact support almost

surely.

Definition 4.1. A mean-shift structural shock ϵ1tpδq is a transformation of ϵ1t such that

Ppϵ1tpδq P E1q “ 1 and Erϵ1tpδqs “ δ.

With a mean-shift shock, at impact it holds Xtpδq “ Xt ` pϵ1tpδq ´ ϵ1tq. In the

standard setting, where Erϵts “ 0 and E1 ” R, ϵ1tpδq “ ϵ1t ` δ is clearly valid. More

generally, however, imposing Erϵ1tpδqs “ δ requires that the distribution of ϵ1t be known.

If instead one is willing to assume only that Erϵ1tpδqs « δ, it is possible to sidestep this

need by introducing a shock relaxation function.
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Definition 4.2. Assume E1 “ ra, bs. A shock relaxation function is a map ρ : E1 Ñ r0, 1s

such that ρpeq “ 0 for all e P R z E1, ρpeq ě 0 for all e P E1 and there exists e0 P E1 for

which ρpe0q “ 1. Moreover, for a given shock δ P R,

(i) If δ ą 0, ρ is said to be right-compatible with δ if e ` ρpeqδ ď b for all e P E1.

(ii) If δ ă 0, ρ is said to be left-compatible with δ if e ` ρpeqδ ě a for all e P E1.

(iii) ρ is compatible with shock magnitude |δ| ą 0 if it is both right- and left-compatible.

By setting ϵ1tpδq “ ϵ1t ` δρpϵ1tq for a ρ compatible with δ, it follows that Xtpδq “

Xt ` δρpϵ1tq and |Erϵ1tpδqs| “ |δErρpϵ1tqs| ď |δ| since Erρpϵ1tqs P r0, 1q by definition of ρ.

If ρ is a bump function, a relaxed shock is a structural shock that has been mitigated

proportionally to the density of innovations at the edges of E1 and the squareness of ρ.

It is important to emphasize that shock relaxation is a generalization of standard shock

designs. Indeed, when X “ R and E1 “ R, ρ “ Itr´8, 8su is a relaxation function

compatible with all δ P R. Nonetheless, we may also wonder of how much information

on nonlinear term G2 we can recover at the “boundary” of a finite sample. If Xt is

unbounded but well-concentrated, even under strong smoothness conditions and strictly

positive density, little can be learned about the local structure of regression functions in

regions of low density.4

Remark 4.1. When studying impulse responses, a researcher should be primarily in-

terested in shock δ itself, not ρ. In this paper, and more specifically in Sections 5

and 6, we choose ρ to be an symmetric exponential bump function, ρ P tx ÞÑ Itx ď

cu expp1 ` p|x{c|α ´ 1q´1q | α ą 0u. This C8 bump class is widely studied in both func-

tional (Mitrovic and Zubrinic, 1997) and Fourier analysis (Stein and Shakarchi, 2011).5

4In our regression setting, for example, Theorem 1 in Kohler et al. (2009) on L2 kernel regression
error, assuming Er|Xt|βs ď M ă 8 for some constant β ą 2s, would require the bandwidth to grow
over X faster than |Xt|. This question is also linked to issues in kernel density estimation over sets with
boundary, see e.g. Karunamuni and Alberts (2005), Malec and Schienle (2014), Berry and Sauer (2017)
and references therein.

5For generic shock distributions, one can for also consider the class tx ÞÑ Ita ď x ď bu expp1` p|2px´

bq{pb ´ aq ` 1|α ´ 1q´1q | α ą 0u of exponential bump functions with domain ra, bs Ă R.
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We aim to set α to be as large as possible to minimize distortions from a linear shift,

while retaining compatibility with δ P D, where D is a set of shocks of empirical interest.

4.2 Relaxed Impulse Response Consistency

We will now study relaxed impulse responses in the setting of additively separable models.

The reason is twofold: First, additive separability is a very common assumption in applied

work, as we shall impose it in the models applied in both Section 5 and 6. Second,

collecting nonlinear terms over lags significantly streamlines notation and analysis. It

would be straightforward, if tedious, to extend our derivations below to the more general

setting of Theorem 3.1.

Given δ P R and compatible shock relaxation function ρ, let rδt :“ δρpϵ1tq. Starting

from a path of realization Xt`j:t and (9), the relaxed shock path is

Xt`jprδtq “ Xt`j ` Θj,11rδt `

j
ÿ

k“1

”

Γk,11Xt`j´kprδtq ´ Γk,11Xt`j´k

ı

“ γjpXt`j:t; rδtq.

The relaxed-shock impulse response is thus given by

ĄIRFhpδq :“ ErZt`jprδtq ´ Zt`js “ Θh,¨1δ E rρpϵ1tqs `

j
ÿ

k“1
E
”

ΓkXt`j´kprδtq ´ ΓkXt`j´k

ı

.

For 1 ď ℓ ď d, we let Vj,ℓpδq be the sample analog of the horizon j nonlinear effect on the

ℓth variable,

Vj,ℓpδq :“ 1
n ´ j

n´j
ÿ

t“1

”

Γj,ℓγjpXt`j:t; rδtq ´ Γj,ℓXt`j

ı

“
1

n ´ j

n´j
ÿ

t“1
vj,ℓpXt`j:t; rδtq

where Γj,ℓ is the ℓth component of functional vector Γj. As ϵ1t is not universally observ-

able, we introduce its residual counterpart, prδt “ δρppϵ1tq. The associated plug-in sample

estimates are pVj,ℓpδq “ pn ´ jq´1 řn´j
t“1 pvj,ℓ

`

Xt`j:t;
p

rδt

˘

, pvj,ℓpXt`j:t;
p

rδtq “ pΓj,ℓpγjpXt`j:t;
p

rδtq ´

pΓj,ℓXt`j, and
y

ĄIRFh,ℓpδq “ pΘh,¨1δ n´1
n
ÿ

t“1
ρppϵ1tq `

h
ÿ

j“0

pVj,ℓpδq.

Our next theorem proves consistency of the relaxed impulse responses estimator based

on semiparametric series estimates. We leverage the sup-norm bounds of Theorem 3.1 to
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derive a result that is uniform in δ over a compact interval r´D, Ds, D ą 0. This allows

us to make valid comparisons between IRFs due to shocks of different size.

Theorem 4.1. Let y

ĄIRFh,ℓpδq be the semiparametric estimate for the horizon h relaxed

shock IRF of variable ℓ based on relaxation function ρ with compatibility range r´D, Ds.

Under the assumptions in Theorem 3.1 and Assumption 2,

sup
δPr´D,Ds

∣∣∣∣yĄIRFh,ℓpδq ´ ĄIRFh,ℓpδq

∣∣∣∣ “ oP p1q

for any fixed integers 0 ď h ă 8 and 1 ď ℓ ď d.

Remark 4.2. By construction of y

ĄIRFh,ℓpδq, Proposition 2.1 remains valid when comput-

ing ĄIRFhpδq instead of IRFhpδq. The only adjustment to be made is that in step (i) one

must set Xtpδq “ Xt ` δρpϵ1tq and iterate forward accordingly. Assumptions 1, 3 and 9 1

ensure that the IRFs of interest are well-defined.

Remark 4.3. Our definition of compatible relaxation function is static, as it considers

only the impact effect of a shock. Nonetheless, Xtpδq P X for all t must hold to properly

define ĄIRFhpδq. In theory, given δ, one can always either expand X or strengthen ρ so that

compatibility is enforced at all horizons 1 ď h ď H. In simulations, the choice of domains

and relaxation functions can be done transparently. When working with empirical data,

unless Xt is exogenous or strictly autoregressive, more care has to be taken to check that

there is no dynamic domain violation. In Section 6.2, where Xt is an endogenous series,

we discuss such robustness check.

5 Simulations

To analyze the performance of the two-step semiparametric estimation strategy discussed

above, we begin by considering the two simulation setups employed by Gonçalves et al.

(2021). The setup involves comparing the bias and MSE of the estimated relaxed shocked

impulse response functions for different methods. Additionally, we provide simulations

under a misspecification design which highlight how in larger samples the nonparametric
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Figure 1: Simulation results for DGP 2 with δ “ `1.

sieve estimator consistently recovers impulse responses, while a least-squares estimator

constructed with a pre-specified nonlinear transform does not. We compute MSE and

bias of both the parametric IRFs obtained via least squares regression on transformed

regressors and the semiparametric two-step estimator using 10 000 Monte Carlo replica-

tions. Population impulse responses are computed with 105 replications. In all setups, we

use a cubic B-spline sieve.

Benchmarks. Like in Gonçalves et al. (2021), we consider two simulation setups: A

bivariate design with identified shocks (DGPs 1-3), and a three-variable design with partial

block-recursive identification (DGPs 4-6). In all cases, we consider a sample of size of

n “ 240, which is realistic for most macroeconomic data settings: this is approximately

equivalent to 20 years of monthly data or 60 years of quarterly data (Gonçalves et al.,

2021).

Due to space constraints, we discuss here only a bi-variate simulation design with

a shock δ “ `1. We set either Xt “ ϵ1t (DGP 1), Xt “ 0.5Xt´1 ` ϵ1t (DGP 2) or

Xt “ 0.5Xt´1 ` 0.2Yt´1 ` ϵ1t (DGP 3), and

Yt “ 0.5Yt´1 ` 0.5Xt ` 0.3Xt´1 ´ 0.4 maxp0, Xtq ` 0.3 maxp0, Xt´1q ` ϵ2t.

Innovations ϵ1t and ϵ2t are drawn as independent, truncated standard Gaussian variables
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over r´3, 3s. The shock relaxation function is ρpzq “ It|z| ď 3u exp p1 ` r|z{3|4 ´ 1s´1q,

c.f. Remark 4.1. In Figure 1 we show MSE and bias curves for the IRF on Yt in DGP 2,

where Xt is an exogenous AR(1) process. One case see that the sieve IRF leads only to a

minor increase in mean squared error at short horizon compared to directly estimating the

parameter of the true specification. This marginal increase in MSE is consistent across

DGPs 1 through 3.

These simulations show that there is negligible loss of efficiency in terms of either

MSE or bias when implementing the fully flexible semiparametric estimates at realistic

sample sizes. We confirm these results when studying DGPs 4-6, where estimation of

structural matrix B0 is included in the regression problem. Detailed results can be found

in Appendix C.

Misspecified Model. To assess the robustness of the proposed semiparametric ap-

proach versus the parametric nonlinear model, we consider a modified version (DGP 7):

Xt “ 0.8Xt´1 ` ϵ1t,

Yt “ 0.5Yt´1 ` 0.9φpXtq ` 0.5φpXt´1q ` ϵ2t.

(12)

where φpxq :“ px´1qp0.5`tanhpx´1q{2q. In this design, we assume that the researcher’s

prior is φpxq “ maxp0, xq, as in the benchmark simulations. To emphasize the difference

in estimated IRFs, in this setup we focus on δ “ ˘2 and n “ 2400; innovations ϵ1t

and ϵ2t are drawn from a standard Gaussian distribution truncated over r´5, 5s, and

ρpzq “ expp1 ` r|z{5|3.9 ´ 1s´1q. As Figure 2 shows, positive-shock parametric nonlinear

IRF estimates are severely biased, while semiparametric sieve IRFs show comparatively

negligible error: This yields an up to 4 times reduction of overall MSE at short horizons.

Appendix C provides additional simulation results proving that the same improvements

hold when δ “ ´2. There, we also discuss the setting where φpxq is replaced with map

rφpxq “ φpx ` 1q, which agrees closely with maxp0, xq. In this last setting, we find that

parametric nonlinear regression actually dominates in MSE and bias terms. As one might

expect, therefore, parametric modeling is optimal only in cases where a good model prior
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Figure 2: Simulation results for DGP 7 with shock δ “ `2.

is available.

6 Empirical Applications

In this section, we showcase the practical utility of the proposed semiparametric sieve

estimator by considering two applied exercises.

6.1 Monetary Policy Shocks

A four-variable model is set up identically to the one analyzed by Gonçalves et al. (2021)

based on Tenreyro and Thwaites (2016). Let Zt “ pXt, FFRt, GDPt, PCEtq
1, where Xt is

the series of narrative U.S. monetary policy shocks, FFRt is the federal funds rate, GDPt is

log-real GDP and PCEt is PCE inflation.6 As a pre-processing step, GDP is transformed

to log GDP and then linearly detrended. The data is available quarterly and spans from

1969:Q1 to 2007:Q4. As in Tenreyro and Thwaites (2016), we use a model with one lag,

p “ 1. Narrative shock Xt is considered to be an i.i.d. sequence, i.e. Xt “ ϵ1t, therefore

we assume no dependence on lagged variables when implementing the pseudo-reduced

6In Gonçalves et al. (2021) p. 122, it is mentioned that CPI inflation is included in the model, but
both in the replication package made available by one the authors (https://sites.google.com/site/
lkilian2019/research/code) from which we source the data, and in Tenreyro and Thwaites (2016),
PCE inflation is used instead. Moreover, the authors say that both the FFR and PCE enter the model
in first differences, yet in their code these variables are kept in levels. We thus consider a model in levels
to allow for a proper comparison between estimation methods.
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form (3). Like in Gonçalves et al. (2021), we consider positive and negative shocks of size

|δ| “ 1 and choose ρpzq “ It|z| ď 4u expp1 ` r|z{4|6 ´ 1s´1q to be the shock relaxation

function. Figure D.9 in the Online Appendix provides a check for the validity of ρ given

the sample distribution of Xt. Knots for sieve estimation are located at t´1, 0, 1u. The

model is block-recursive: U.S. monetary policy shocks are identified without the need to

impose additional assumptions on the remaining shocks. Gonçalves et al. (2021), following

Tenreyro and Thwaites (2016), use two nonlinear transformations, F pxq “ maxp0, xq and

F pxq “ x3, to try to gauge how negative versus positive and large versus small shocks,

respectively, affect the U.S. macroeconomy. They find the two maps yield very similar

responses, so we focus on comparing the IRFs estimated via sieve regression with the ones

obtained by setting F pxq “ maxp0, xq, as well as linear IRFs. Figure 3 plots estimated

impulse responses to both positive and negative monetary policy shocks. The impact

on the federal funds rate is consistent across all three procedures. The semiparametric

nonlinear response for GDP, unlike in the case of linear and parametric nonlinear IRFs, is

nearly zero at impact and has a monotonic decrease until around 10 quarters ahead. The

change in shape is meaningful, as the procedure of Gonçalves et al. (2021) still yields a

small short-term upward jump in GDP when a monetary tightening shock hits. Moreover,

after the positive shock, the sieve GDP responses reaches its lowest value 4 and 2 quarters

before the linear and parametric nonlinear responses, while its size is 13% and 16% larger,

respectively.7 Finally, the sieve PCE response is positive for a shorter interval, but looks

to be more persistent once it turns negative also 10 months after impact.

When the shock is expansionary, one sees that the semiparametric FFR response is

marginally mitigated compared to the alternative estimates. An important puzzle is due

to the clearly negative impact on GDP: Both types of nonlinear responses show a drop

in output in the first 5 quarters. Such a quick change seems unrealistic, as one does not

expect inflation to suddenly reverse sign, but, as Gonçalves et al. (2021) also remark, the

overall impact on inflation of both shocks is small when compared to the change in federal

7The strength of this effect changes across different shocks sizes, as Figure D.7 in Appendix D proves.
As shocks sizes get smaller, nonlinear IRFs, both parametric and sieve, show decreasing negative effects.
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Figure 3: Effect of an unexpected U.S. monetary policy shock on federal funds rate, GDP
and inflation. Linear (gray, dashed), parametric nonlinear with F pxq “ maxp0, xq (red,
point-dashed) and sieve (blue, solid) structural impulse responses. For δ “ `1, the lowest
point of the GDP response is marked with a dot.

funds rate.

6.2 Uncertainty Shocks

Traditional central bank policymaking is heavily guided by the principle that a central

bank can and should influence expectations: Therefore, controlling the (perceived) level of

ambiguity in current and future commitments is key. Istrefi and Mouabbi (2018) provide

an analysis of the impact of unforeseen changes in the level of subjective interest rate

uncertainty on the macroeconomy. They derive a collection of new indices based on short-

and long-term profession forecasts. Their empirical study goes in depth into studying the

different components that play a role in transmitting uncertainty shocks, but for the sake
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of simplicity my evaluation will focus only on their 3-months-ahead uncertainty measure

for short-term interest rate maturities (3M3M) and the US economy.

Like in Istrefi and Mouabbi (2018), let Zt “ pXt, IPt, CPIt, PPIt, RTt, URtq
1 be a

vector where Xt is the chosen uncertainty measure, IPt is the (log) industrial production

index, CPIt is the CPI inflation rate, PPIt is the producer price inflation rate, RTt is (log)

retail sales and URt is the unemployment rate. The nonlinear model specification is given

by

Zt “ µ ` A1Zt´1 ` A2Zt´1 ` F1pXt´1q ` F2pXt´2q ` DWt ` ut,

where Wt includes a linear time trend and oil price OILt.8 The data has monthly frequency

and spans the period between May 1993 and July 2015.9 Note here that, following the

identification strategy of Gonçalves et al. (2021), nonlinear functions F1 and F2 are to

be understood as not effecting Xt, which is the structural variable. The linear VAR

specification of Istrefi and Mouabbi (2018) is recovered by simply assuming F1 “ F2 “ 0

prior to estimation. Since they use recursive identification and order the uncertainty

measure first, this model too is block-recursive. We consider a positive shock with intensity

δ “ σϵ,1, where σϵ,1 is the standard deviation of structural innovations. In this empirical

exercise, the relaxation function is ρpzq “ I t|z| ď 1{4u expp1 ` r|4x|8 ´ 1s´1q and we set

t0.1, 0.3u to be the cubic spline knots. As 3M3M is a non-negative measure of uncertainty,

some care must be taken to make sure that the shocked paths for Xt do not reach negative

values. Figure D.10 in Appendix D shows that the relaxation function is compatible, and

also that the shocked nonlinear paths of Xt with impulse δ and δ1 all do not cross below

zero.

Figure 4 presents both the linear and nonlinear structural impulse responses ob-

tained. Importantly, even though Istrefi and Mouabbi (2018) estimate a Bayesian VAR

model and here we consider a frequentist vector autoregressive benchmark, the shape of

8Inclusion of linear exogenous variables in the semiparametric theoretical framework in Section 3 is
straightforward as long as one can assume that they are stationary and weakly dependent. The choice of
using p “ 2 is identical to that of the original authors, based on BIC.

9I reuse the original data employed by the authors, who kindly shared it upon request, but rescale
retail sales (RTt) so that the level on January 2000 equals 100.
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Figure 4: Effect of an unexpected, one-standard-deviation uncertainty shock to US
macroeconomic variables. Linear (gray, dashed) and sieve (blue, solid) structural im-
pulse responses. The extreme points of the responses are marked with a dot.

the IRFs is retained, c.f. the median response in the top row of their Figure 4. When

uncertainty increases, industrial production drops, and the size and extent of this decrease

is intensified in the nonlinear responses. In fact, the sieve IP response reaches a value

that is 54% lower than that of the respective linear IRF.10 A similar behavior holds true

for retail sales (38% lower) and unemployment (23% higher), proving that this shock is

more profoundly contractionary than suggested by the linear VAR model. Further, CPI

and PP inflation both display short-term fluctuations, which strengthen the short- and

medium-term impact of the shock. CPI and PP nonlinear inflation responses are 76%

and 41% stronger than their linear counterpart, respectively. These differences show that

linear IRFs might be both under-estimating the short-term intensity and misrepresent-

ing long-term persistence of inflation reactions. From another perspective, Nowzohour

and Stracca (2020) presented evidence that consumer consumption growth, credit growth

10Figure D.11 in Appendix D confirms that this difference is consistent over a range of shock sizes,
too.
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and unemployment do not co-move with the policy uncertainty index (EPU) of Baker

et al. (2016), but are negatively correlated with financial volatility. Given the strength of

nonlinear IRFs, this discrepancy may also suggest that the 3M3M uncertainty measure

partially captures the financial channel, too.

The introduction of nonlinear terms in the structural VAR of Istrefi and Mouabbi

(2018) thus provides evidence that fundamental impulse response features might other-

wise be missed. Indeed, Figure D.8 in Appendix D - which plots regression functions of

endogenous variables with respect to Xt - shows that high and low uncertainty levels may

have significantly different effects on endogenous economic variables. In particular, at the

second lag, tail effects appear to be milder, while at low levels changes in uncertainty have

more pronounced impact.

7 Conclusion

This paper studies the application of semiparametric series estimation to the problem

of structural impulse response analysis for time series. After first discussing the partial

identification model setup, we have used the conditions of system contractivity and sta-

bility to derive physical measures of the dependence for nonlinear systems. In turn, these

allow to derive primitive conditions under which series estimation can be employed and

structural IRFs are consistently estimated. Simulation results prove that this approach is

valid in moderate samples and has the added benefit of being robust to misspecification of

the nonlinear model components. Finally, two empirical applications showcase the utility

in departing from both linear and parametric nonlinear specifications when estimating

structural responses.

A key aspect that we have not touched upon is inference in the form of confidence

intervals. This however seems feasible in light of the uniforms inference results obtained

by e.g. Belloni et al. (2015) in the i.i.d. setting and Li and Liao (2020) for time series data.

Studying other sieve spaces, such as neural networks (Chen and White, 1999, Farrell et al.,
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2021) or shape-preserving sieves (Chen, 2007), would also be highly desirable. Finally, in

the spirit of Kang (2021), deriving new inference results that are uniform in the selection

of series terms is important, as, in practice, the sieve should be tuned in a data-driven

way.
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A Dependence Conditions

A.1 Mixing

For the sake of completeness, we first recall the definition of β-mixing process: this is
originally the dependence frameworks employed by Chen and Christensen (2015). Let
pΩ, Q,Pq be the underlying probability space and define

βpA, Bq :“ 1
2 sup

ÿ

pi,jqPIˆJ

|PpAi X Biq ´ PpAiqPpBiq|

where A, B are two σ-algebras, tAiuiPI Ă A, tBjujPJ Ă B and the supremum is taken over
all finite partitions of Ω. The h-th β-mixing coefficient of process tW2tutPZ is defined as

βphq “ sup
t

β
`

σp. . . , W2t´1, W2tq, . . . , σpW2t`h, W2t`h`1, . . .q
˘

,

and W2t is said to be geometric or exponential β-mixing if βphq ď γ1 expp´γ2hq for some
γ1 ą 0 and γ2 ą 0. An important consideration to be made regarding mixing assumptions
is that they are, in general, hard to study. Especially in nonlinear systems, assuming that
βphq decays exponentially over h imposes very high-level assumptions on the model. There
are, however, a number of setups (linear and nonlinear) in which it is known that β-mixing
holds under primitive assumptions (see Chen (2013) for examples and relevant references).

A.2 Model-Based Physical Dependence

Consider a non-structural model of the form

Zt “ GpZt´1, ϵtq. (13)

This is a generalization of semi-reduced model (2) where linear and nonlinear components
are absorbed into one functional term and B0 is the identity matrix.1 Indeed, note that

˚E-mail: giovanni.ballarin@unisg.ch
1In this specific subsection, shock identification does not play a role and, as such, one can safely

ignore B0.
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models of the form Zt “ GpZt´1, . . . , Zt´p, ϵtq can be rewritten as (13) using a companion
formulation. If ϵt is stochastic, (13) defines a causal nonlinear stochastic process. More
generally, it defines a nonlinear difference equation and an associated dynamical system
driven by ϵt. Throughout this subsection, we shall assume that Zt P Z Ď RdZ as well as
ϵt P E Ď RdZ .

Relying on the framework of Pötscher and Prucha (1997), we now introduce explicit
conditions that allow to control dependence in nonlinear models by using the toolbox
of physical dependence measures developed by Wu (2005, 2011). The aim is to use a
dynamical system perspective to address the question of imposing meaningful assumptions
on nonlinear dynamic models. This makes it possible to give more primitive conditions
under which one can actually estimate (10) in a semiparametric way.

A.3 Stability

An important concept for dynamical system theory is that of stability. Stability turns
out to play a key role in constructing valid asymptotic theory, as it is well understood in
linear models. It is also fundamental in developing the approximation theory of nonlinear
stochastic systems.

Example A.1. As a motivating example, first consider the linear system Zt “ BZt´1 `ϵt,
where we may assume that tϵtutPZ, ϵt P RdZ , is a sequence of i.i.d. innovations.2 It is well-
known that this system is stable if and only if the largest eigenvalue of B is strictly
less than one in absolute value (Lütkepohl, 2005). For a higher order linear system,
Zt “ BpLqZt´1 ` ϵt where BpLq “ B1 ` B2L ` . . . ` BpLp´1, stability holds if and only if
|λmaxpBq| ă 1 with B being the companion matrix associated with BpLq.

Extending the notion of stability from linear to nonlinear systems requires some
care. Pötscher and Prucha (1997) derived generic conditions allowing to formally extend
stability to nonlinear models by first analyzing contractive systems.

Definition A.1 (Contractive System). Let Zt P Z Ď RdZ , ϵt P E Ď RdZ , where tZtutPZ is
generated according to Zt “ GpZt´1, ϵtq. The system is contractive if for all pz, z1q P Z ˆZ
and pe, e1q P E ˆ E the condition ∥Gpz, ϵq ´ Gpz1, ϵ1q∥ ď CZ∥z ´ z1∥ ` Cϵ∥e ´ e1∥ holds with
Lipschitz constants 0 ď CZ ă 1 and 0 ď Cϵ ă 8.

Sufficient conditions to establish contractivity are

sup
"

∥∥∥∥∥ stackdZ
i“1

„

BG

BZ
pzi, ei

q

ȷ

i

∥∥∥∥∥
ˇ

ˇ

ˇ

ˇ

zi
P Z, ei

P E
*

ă 1 (14)

2One could alternatively think of the case of a deterministic input, setting ϵt „ Ptpatq, where Ptpatq

is a Dirac density on the deterministic sequence tatutPZ.
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and ∥∥∥∥∥BG

Bϵ

∥∥∥∥∥ ă 8, (15)

where the stacking operator stackdZ
i“1r ¨ si progressively stacks the rows, indexed by i, of its

argument (which can be changing with i) into a matrix. Values pzi, eiq P Z ˆ E change
with index i as the above condition is derived using the mean value theorem. Therefore
it is necessary to consider a different set of values for each component of Zt.

It is easy to see, as Pötscher and Prucha (1997) point out, that contractivity is often
a too strong condition to be imposed. Indeed, even in the simple case of a scalar AR(2)
model Zt “ b1Zt´1 ` b2Zt´2 ` ϵt, regardless of the values of b1, b2 P R contractivity is
violated. This is due to the fact that in a linear AR(2) model studying contractivity
reduces to checking ∥B∥ ă 1 instead of |λmaxpBq| ă 1, and the former is a stronger
condition than the latter.3 One can weaken contractivity – which must hold for G as a
map from Zt´1 to Zt – to the idea of eventual contractivity. That is, intuitively, one can
impose conditions on the dependence of Zt`h on Zt for h ą 1 sufficiently large. To do this
formally, we first introduce the definition of system map iterates.

Definition A.2 (System Map Iterates). Let Zt P Z Ď RdZ , ϵt P E Ď RdZ , where tZtutPZ

is generated from a sequence tϵtutPZ according to Zt “ GpZt´1, ϵtq. The h-order system
map iterate is defined to be

Gphq
pZt, ϵt`1, ϵt`2, . . . , ϵt`hq :“ GpGp¨ ¨ ¨ GpZt, ϵt`1q ¨ ¨ ¨ , ϵt`h´1q, ϵt`hq

“ Gp¨, ϵt`hq ˝ Gp¨, ϵt`h´1q ˝ ¨ ¨ ¨ ˝ GpZt, ϵt`1q,

where ˝ signifies function composition and Gp0qpZtq “ Zt.

To shorten notation, in place of GphqpZt, ϵt`1, ϵt`2, . . . , ϵt`hq we shall use GphqpZt, ϵt`1:t`hq.
Additionally, for 1 ď j ď h, the partial derivative BGph˚q{Bϵj for some fixed h˚ is to be
intended with respect to ϵt`j, the j-th entry of the input sequence. This derivative does
not depend on the time index since by assumption G is time-invariant and so is Gphq.

Taking again the linear autoregressive model as an example,

Zt`h “ Gphq
pZt, ϵt`1:t`hq “ Bh

1 Zt `

h´1
ÿ

i“0
Bi

1ϵt`h´i

since Gpz, ϵq “ B1z ` ϵ. If B1 determines a stable system, then ∥Bh
1 ∥ Ñ 0 as h Ñ 8 since

Gh converges to zero, and therefore ∥Bh
1 ∥ ď CZ ă 1 for h sufficiently large. It is thus

possible to use system map iterates to define stability for higher-order nonlinear systems.

3See Pötscher and Prucha (1997), pp.68-69.
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Definition A.3 (Stable System). Let Zt P Z Ď RdZ , ϵt P E Ď RdZ , where tZtutPZ is
generated according to the system Zt “ GpZt´1, ϵtq. The system is stable if there exists
h˚ ě 1 such that for all pz, z1q P Z ˆ Z and pe1, e2, . . . eh˚ , e1

1, e1
2, . . . , e1

h˚q P
Ś2h˚

i“1 E

∥Gph˚q
pz, e1:h˚q ´ Gph˚q

pz1, e1
1:h˚q∥ ď CZ∥z ´ z1∥ ` Cϵ∥e1:h˚ ´ e1

1:h˚∥

holds with Lipschitz constants 0 ď CZ ă 1 and 0 ď Cϵ ă 8.

It is important to remember that this definition encompasses systems with an arbi-
trary finite autoregressive structure, i.e., Zt “ GpZt´p`1, . . . , Zt´1, ϵtq for p ě 1, thanks to
the companion formulation of the process. An explicit stability condition, similar to that
discussed above for contractivity, can be derived by means of the mean value theorem.
Indeed, for a system to be stable it is sufficient that, at iterate h˚,

sup
#∥∥∥∥∥ stackdZ

i“1

„

BGph˚q

BZ
pzi, ei

1:h˚q

ȷ

i

∥∥∥∥∥
ˇ

ˇ

ˇ

ˇ

zi
P Z, ei

1:h˚ P

h˚
ą

i“1
E

+

ă 1 (16)

and

sup
#∥∥∥∥∥ BGph˚q

Bϵj

pz, e1:h˚q

∥∥∥∥∥
ˇ

ˇ

ˇ

ˇ

z P Z, e1:h˚ P

h˚
ą

i“1
E

+

ă 8, j “ 1, . . . , h˚. (17)

Remark A.1. Pötscher and Prucha (1997) have used conditions (14)-(15) and (16)-(17)
as basis for uniform laws of large numbers and central limit theorems for Lr-approximable
and near epoch dependent processes.

A.4 Physical Dependence

Wu (2005) first proposed alternatives to mixing concepts by proposing dependence mea-
sures rooted in a dynamical system view of a stochastic process. Much work has been
done to use such measures to derive approximation results and estimator properties, see
for example Wu et al. (2010), Wu (2011), Chen et al. (2016), and references within.

Definition A.4. Let tZtutPZ be a process that can be written as Zt`h “ GphqpZt, ϵt`1:t`hq

for all h ě 1, (nonlinear) maps Gphq and innovations tϵtutPZ. If for all t P Z and chosen
r ě 1, Zt has finite rth moment, the functional physical dependence measure ∆r is

∆rphq :“ sup
t

∥∥∥ Zt`h ´ Gphq
pZ 1

t, ϵt`1:t`hq
∥∥∥

Lr

where tZ 1
tutPZ is an independent copy of tZtutPZ based on innovation process tϵ1

tutPZ, itself
an independent copy of tϵtutPZ.

Chen et al. (2016), among others, show how one may replace the geometric β-mixing
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assumption with a physical dependence assumption.4 We will consider the setting where
models that have dependence – as measured by ∆rphq – which decays exponentially with
h.

Definition A.5 (Geometric Moment Contracting Process). tZtutPZ is geometric moment
contracting (GMC) in Lr norm if there exists a1 ą 0, a2 ą 0 and τ P p0, 1s such that

∆rphq ď a1 expp´a2 hτ
q.

GMC conditions can be considered more general than β-mixing, as they encompass
well-known counterexamples, e.g., the known counterexample provided by Zt “ pZt´1 `

ϵtq{2 for ϵt i.i.d. Bernoulli r.v.s (Chen et al., 2016).
In the following proposition we prove that if contractivity or stability conditions as

defined by Pötscher and Prucha (1997) hold for G and tϵtutPZ is an i.i.d. sequence, then the
process tZtutPZ is GMC – according to Definition A.5 – under weak moment assumptions.

Proposition A.1. Assume that tϵtutPZ, ϵt P E Ď RdZ are i.i.d. and tZtutPZ is generated
according to Zt “ GpZt´1, ϵtq, where Zt P Z Ď RdZ and G is a measurable function.

(a) If contractivity conditions (14)-(15) hold, suptPZ∥ϵt∥Lr ă 8 for r ě 2 and ∥Gpz, ϵq∥ ă

8 for some pz, ϵq P Z ˆ E, then tZtutPZ is GMC with ∆rpkq ď a expp´γhq where
γ “ ´ logpCZq and a “ 2∥Zt∥Lr ă 8.

(b) If stability conditions (16)-(17) hold, suptPZ∥ϵt∥Lr ă 8 for r ě 2 and ∥BG{BZ∥ ď

MZ ă 8, then tZtutPZ is GMC with ∆rpkq ď ā expp´γh˚ hq where γh˚ “ ´ logpCZq{h˚

and ā “ 2∥Zt∥Lr maxtMh´1
Z , 1u{CZ ă 8.

Proposition A.1 is important in that it links the GMC property to transparent con-
ditions on the structure of the nonlinear model. It also allows to handle multivariate
systems, while previous work has focused on scalar systems (c.f. Wu (2011) and Chen
et al. (2016)).

Lastly, the following lemma shows that if tW2tutPZ is geometric moment contracting,
Assumption 9 is fulfilled.5

Lemma A.1. If Assumption 7(iii) holds and tW2tutPZ is strictly stationary and GMC
then one may choose an integer sequence q “ qpnq ď n{2 with pn{qqr`1qKρ∆rpqq “ op1q

for ρ “ 5{2 ´ pr{2 ` 2{rq ` ω2 and r ą 2 such that

∥p rB1
π
rBπ{nq ´ IK∥ “ OP

˜

ζK,nλK,n

c

q log K

n

¸

“ oP p1q

4We adapt here the definitions of Chen et al. (2016) to work with a system of the form Zt “

GpZt´1, ϵtq.
5Compare also with Lemma 2.2 in Chen and Christensen (2015).
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provided ζK,nλK,n

a

pq log Kq{n “ op1q.

It can be seen that Lemma A.1 holds by setting
a

Kplogpnqq2{n “ op1q and choosing
qpnq “ γ´1 logpKρnr`1q, where γ is a GMC factor, see Proposition A.1 in the Online
Appendix for details. Therefore, the rate is the same as the one derived by Chen and
Christensen (2015) for exponentially β-mixing regressors. It is straightforward to prove
that, if one assume tZtutPZ fulfills GMC conditions, then tW2tutPZ is also a geometric
moment contracting process, see Remark B.1 below. Accordingly, Lemma A.1 applies
and Assumption 9 is automatically verified.

B Proofs

Matrix Norms Let
∥A∥r :“ max

␣

∥Ax∥r

ˇ

ˇ ∥x∥r ď 1
(

be the r-operator norm of matrix A P Cd1ˆd2 . The following Theorem establishes the
equivalence between different operator norms as well as the compatibility constants.

Theorem B.1 (Feng (2003)). Let 1 ď p, q ď 8. Then for all A P Cd1ˆd2,

∥A∥p ď λp,qpd1qλq,ppd2q∥A∥q where λa,bpdq :“

$

&

%

1 if a ě b,

d1{a´1{b if a ă b.

This norm inequality is sharp.

In particular, if p ą q then it holds pd2q´p1{q´1{pq∥A∥p ď ∥A∥q ď pd1q1{q´1{p∥A∥p.

B.1 GMC Conditions and Proposition A.1

Lemma B.1. Assume that tϵtutPZ, ϵt P E Ď RdZ are i.i.d., and tZtutPZ is generated
according to Zt “ GpZt´1, ϵtq, where Zt P Z Ď RdZ and G is a measurable function. If
either

(a) Contractivity conditions (14)-(15) hold, suptPZ∥ϵt∥Lr ă 8 and ∥Gpz, ϵq∥ ă 8 for
some pz, ϵq P Z ˆ E;

(b) Stability conditions (16)-(17) hold, suptPZ∥ϵt∥Lr ă 8 and ∥BG{BZ∥ ď MZ ă 8;

then supt∥Zt∥Lr ă 8 w.p.1.

Proof.
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(a) In a first step, we show that, given event ω P Ω, realization Ztpωq is unique with
probability one. To do this, introduce initial condition z˝ for ℓ ą 1 such that z˝ P Z
and ∥z˝∥ ă 8. Define Z

p´ℓq

t pωq “ Gpℓqpy˝, ϵt´ℓ`1:tpωqq. Further, let Z
1p´ℓq

t be the
realization with initial condition z1

˝ “ z˝ and innovation realizations ϵt´ℓ`1:tpωq.
Note that ∥Z

p´ℓq

t pωq ´ Z
1p´ℓq

t pωq∥ ď Cℓ
Z ∥z˝ ´ z1

˝∥, which goes to zero as ℓ Ñ 8.
Therefore, if we set Ztpωq :“ limℓÑ8 Z

p´ℓq

t pωq, Ztpωq is unique with respect to the
choice of z˝ w.p.1. A similar recursion shows that

∥∥∥Z
p´ℓq

t pωq
∥∥∥ ď Cℓ

Z ∥z˝∥ `

ℓ´1
ÿ

k“0
Ck

ZCϵ ∥ϵt´kpωq∥ .

By norm equivalence, this implies

∥∥∥Z
p´ℓq

t

∥∥∥
Lr

ď Cℓ
Z ∥z˝∥r `

ℓ´1
ÿ

k“0
Ck

ZCϵ ∥ϵt´k∥Lr ď Cℓ
Z ∥z˝∥r `

Cϵ

1 ´ CZ

sup
tPZ

∥ϵt∥Lr ă 8,

and taking the limit ℓ Ñ 8 proves the claim.

(b) Consider again distinct initial conditions z1
˝ “ z˝ and innovation realizations ϵt´ℓ`1:tpωq,

yielding Z
1p´ℓq

t pωq and Z
p´ℓq

t pωq, respectively. We may use the contraction bound
derived in the proof of Proposition A.1 (b) below, that is, ∥ Z

p´ℓq

t pωq´Z
1p´ℓq

t pωq ∥r ď

Cℓ
ZC2∥z˝ ´ z1

˝∥r, where C2 ą 0 is a constant. With trivial adjustments, the unique-
ness and limit arguments used for (a) above apply here too.

Proof of Proposition A.1.

(a) By assumption for all pz, z1q P Z ˆ Z and pe, e1q P E ˆ E it holds that ∥Gpz, ϵq ´

Gpz1, ϵ1q∥ ď CZ∥z ´ z1∥ ` Cϵ∥e ´ e1∥, where 0 ď CZ ă 1 and 0 ď Cϵ ă 8. The
equivalence of norms directly generalizes this inequality to any r-norm for r ą 2.
We study ∥Zt`h ´ Z 1

t`h∥r where Z 1
t`h is constructed with a time-t perturbation of

the history of Zt`h. Therefore, for any given t and h ď 1 it holds that∥∥∥ Zt`h ´ Gphq
pZ 1

t, ϵt`1:t`hq
∥∥∥

r
ď CZ∥Gph´1q

pZt, ϵt`1:t`h´1q ´ Gph´1q
pZ 1

t, ϵt`1:t`h´1q∥r

ď Ch
Z∥Zt ´ Z 1

t∥r,

since sequence ϵt`1:t`h is common between Zt`h and Z 1
t`h. Clearly then∥∥∥ Zt`h ´ Gphq

pZ 1
t, ϵt`1:t`hq

∥∥∥
r

ď 2∥Zt∥r expp´γhq

for γ “ ´ logpCZq. Letting a “ 2∥Zt∥r and shifting time index t backward by h,
since supt∥Zt∥Lr ă 8 w.p.1 from Lemma B.1 the result for Lr follows with τ “ 1.
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(b) Proceed similar to (a), but notice that now we must handle cases of steps 1 ď h ă h˚.
Consider iterate h˚ ` 1, for which∥∥∥ Zt`h`1 ´ Gph`1q

pZ 1
t, ϵt`1:t`h`1q

∥∥∥
r

ď CZ∥Gphq
pGpZt, ϵt`1q, ϵt`2:t`hq ´ Gphq

pGpZ 1
t, ϵt`1q, ϵt`2:t`hq∥r

ď Ch
Z∥GpZt, ϵt`1q ´ GpZ 1

t, ϵt`1q∥r

ď Ch
ZMZ∥Zt ´ Z 1

t∥r

by the mean value theorem. Here we may assume that MZ ě 1 otherwise we would
fall under case (a), so that MZ ď M2

Z ď . . . ď Mh˚´1
Z . More generally,∥∥∥ Zt`h`1 ´ Gph`1q

pZ 1
t, ϵt`1:t`h`1q

∥∥∥
r

ď C
jphq

Z maxtMh˚´1
Z , 1u∥Zt ´ Z 1

t∥r

for jphq :“ th{h˚u. Result (b) then follows by noting that jphq ě h{h˚ ´ 1 and then
proceeding as in (a) to derive GMC coefficients.

Remark B.1. The assumption of GMC for a process translates naturally to vectors
that are composed of stacked lags of realizations. This, for example, is important in the
discussion of Section 3, since one needs that regressors tW2tutPZ be geometric moment
contracting.

Recall that W2t “ pXt, Xt´1, . . . , Xt´p, Yt´1, . . . , Yt´p, ϵ1tq. Here we shall reorder
this vector slightly to actually be W2t “ pXt, Xt´1, Yt´1, . . . , Xt´p, Yt´p, ϵ1tq. For h ą 0
and 1 ď l ď h, let Z 1

t`j :“ ΦplqpZ 1
t, . . . , Z 1

t´p; ϵt`1:t`jq be the a perturbed version of
Zt, where Z 1

t, . . . , Z 1
t´p are taken from an independent copy of tZtutPZ. Define W 1

2t “

pX 1
t, X 1

t´1, Y 1
t´1, . . . , X 1

t´p, Y 1
t´p, ϵ1tq. Using Minkowski’s inequality

∥W2t`h ´ W 1
2t`h∥Lr ď ∥Xt`h ´ X 1

t`h∥Lr `

p
ÿ

j“1
∥Zt`h´j ´ Z 1

t`h´j∥Lr

ď

p
ÿ

j“0
∥Zt`h´j ´ Z 1

t`h´j∥Lr ,

thus, since p ą 0 is fixed finite,

sup
t

∥W2t`h ´ W 1
2t`h∥Lr ď

p
ÿ

j“0
∆rph ´ jq ď pp ` 1q a1Z expp´a2Zhq.

Above, a1Z and a2Z are the GMC coefficients of tZtutPZ.
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B.2 Lemma A.1 and Matrix Inequalities under Dependence

In order to prove Lemma A.1, we modify the approach of Chen and Christensen (2015),
which relies on Berbee’s Lemma and an interlaced coupling, to handle variables with
physical dependence. This is somewhat similar to the proof strategies used in Chen et al.
(2016).

First of all, we recall below a Bernstein-type inequality for independent random matrices
of Tropp (2012).

Theorem B.2. Let tΞiu
n
i“1 be a finite sequence of independent random matrices with

dimensions d1 ˆ d2. Assume ErΞis “ 0 for each i and max1ďiďn∥Ξi∥ ď Rn and define

ς2
n :“ max

#
∥∥∥∥∥∥

n
ÿ

i“1
E
“

Ξi,nΞ1
j,n

‰

∥∥∥∥∥∥ ,

∥∥∥∥∥∥
n
ÿ

i“1
E
“

Ξ1
i,nΞj,n

‰

∥∥∥∥∥∥
+

.

Then for all z ě 0,

P

˜
∥∥∥∥∥∥

n
ÿ

i“1
Ξi

∥∥∥∥∥∥ ě z

¸

ď pd1 ` d2q exp
ˆ

´z2{2
nqς2

n ` qRnz{3

˙

.

The main exponential matrix inequality due to Chen and Christensen (2015), Theo-
rem 4.2 is as follows.

Theorem B.3. Let tXiuiPZ where Xi P X be a β-mixing sequence and let Ξi,n “ ΞnpXiq

for each i where Ξn : X ÞÑ Rd1ˆd2 be a sequence of measurable d1 ˆ d2 matrix-valued
functions. Assume that ErΞi,ns “ 0 and ∥Ξi,n∥ ď Rn for each i and define

S2
n :“ max

␣

E
“

∥Ξi,nΞ1
j,n∥

‰

,E
“

∥Ξ1
i,nΞj,n∥

‰(

.

Let 1 ď q ď n{2 be an integer and let I‚ “ qtn{qu, . . . , n when qtn{qu ă n and I‚ “ H

otherwise. Then, for all z ě 0,

P

˜∥∥∥∥∥∥
n
ÿ

i“1
Ξi,n

∥∥∥∥∥∥ ě 6z

¸

ď
n

q
βpqq ` P

˜∥∥∥∥∥∥
ÿ

iPI‚

Ξi,n

∥∥∥∥∥∥ ě z

¸

` 2pd1 ` d2q exp
ˆ

´z2{2
nqS2

n ` qRnz{3

˙

,

where ∥
ř

iPI‚
Ξi,n∥ :“ 0 whenever I‚ “ H.

To fully extend Theorem B.3 to physical dependence, we will proceed in steps. First,
we derive a similar matrix inequality by directly assuming that random matrices Ξi,n have
physical dependence coefficient ∆Ξ

r phq. In the derivations we will use that

1
pd2q1{2´1{r

∥A∥r ď ∥A∥2 ď pd1q
1{2´1{r∥A∥r.
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for r ě 2.

Theorem B.4. Let tϵjujPZ be a sequence of i.i.d. variables and let tΞi,nun
i“1,

Ξi,n “ GΞ
np. . . , ϵi´1, ϵiq

for each i, where Ξn : X ÞÑ Rd1ˆd2, be a sequence of measurable d1 ˆ d2 matrix-valued
functions. Assume that ErΞi,ns “ 0 and ∥Ξi,n∥ ď Rn for each i and define

S2
n :“ max

␣

E
“

∥Ξi,nΞ1
j,n∥

‰

,E
“

∥Ξ1
i,nΞj,n∥

‰(

.

Additionally assume that ∥Ξi,n∥Lr ă 8 for r ą 2 and define the matrix physical depen-
dence measure ∆Ξ

r phq as

∆Ξ
r phq :“ max

1ďiďn

∥∥∥ Ξi,n ´ Ξh˚
i,n

∥∥∥
Lr

,

where Ξh˚
i,n :“ GΞ

np. . . , ϵ˚
i´h´1, ϵ˚

i´h, ϵi´h`1, . . . , ϵi´1, ϵiq for independent copy tϵ˚
j ujPZ. Let

1 ď q ď n{2 be an integer and let I‚ “ qtn{qu, . . . , n when qtn{qu ă n and I‚ “ H

otherwise. Then, for all z ě 0,

P

˜
∥∥∥∥∥∥

n
ÿ

i“1
Ξi,n

∥∥∥∥∥∥ ě 6z

¸

ď
nr`1

qrpd2qr{2´1zr
∆Ξ

r pqq ` P

˜
∥∥∥∥∥∥
ÿ

iPI‚

Ξi,n

∥∥∥∥∥∥ ě z

¸

`

2pd1 ` d2q exp
ˆ

´z2{2
nqS2

n ` qRnz{3

˙

,

where ∥
ř

iPI‚
Ξi,n∥ :“ 0 whenever I‚ “ H.

Proof. To control dependence, we can adapt the interlacing block approach outlined by
Chen et al. (2016). To interlace the sum, split it into

n
ÿ

i“1
Ξi,n “

ÿ

jPKe

Jk `
ÿ

jPJo

Wk `
ÿ

iPI‚

Ξi,n,

where Wj :“
řqj

i“qpj´1q`1 Ξi,n for j “ 1, . . . , tn{qu are the blocks, I‚ :“ tqtn{qu ` 1, . . . , nu

if qtn{qu ă n and Je and Jo are the subsets of even and odd numbers of t1, . . . , tn{quu,
respectively. For simplicity define J “ Je Y Jo as the set of block indices and let

W :
j :“ E

“

Wj | ϵℓ, qpj ´ 2q ` 1 ď ℓ ď qj
‰

.

Note that by construction tW :
j ujPJe are independent and also tW :

j ujPJo are independent.
Using the triangle inequality we find

P

˜
∥∥∥∥∥∥

n
ÿ

i“1
Ξi,n

∥∥∥∥∥∥ ě 6z

¸

ď P

˜
∥∥∥∥∥∥
ÿ

jPJ

pWj ´ W :
j q

∥∥∥∥∥∥ `

∥∥∥∥∥∥
ÿ

jPJ

W :
j

∥∥∥∥∥∥ `

∥∥∥∥∥∥
ÿ

iPI‚

Ξi,n

∥∥∥∥∥∥ ě 6z

¸
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ď P

˜∥∥∥∥∥∥
ÿ

jPJ

pWj ´ W :
j q

∥∥∥∥∥∥ ě z

¸

` P

˜∥∥∥∥∥∥
ÿ

jPJe

W :
j

∥∥∥∥∥∥ ě z

¸

` P

˜∥∥∥∥∥∥
ÿ

jPJo

W :
j

∥∥∥∥∥∥ ě z

¸

` P

˜∥∥∥∥∥∥
ÿ

iPI‚

Ξi,n

∥∥∥∥∥∥ ě z

¸

“ I ` II ` III ` IV.

We keep term IV as is. As in the proof of Chen and Christensen (2015), terms II and
III consist of sums of independent matrices, where each W :

j satisfies ∥W :
j ∥ ď qRn and

max
!

E
”

∥W :
j W :1

j ∥
ı

,E
”

∥W :1
j W :

j ∥
ı)

ď qS2
n.

Then, using the exponential matrix inequality of Tropp (2012),

P

˜∥∥∥∥∥∥
ÿ

jPJe

W :

k

∥∥∥∥∥∥ ě z

¸

ď pd1 ` d2q exp
ˆ

´z2{2
nqS2

n ` qRnz{3

˙

.

The same holds for the sum over Jo. Finally, we use the physical dependence measure ∆Ξ
r

to bound I. Start with the union bound to find

P

˜∥∥∥∥∥∥
ÿ

jPJ

pWj ´ W :
j q

∥∥∥∥∥∥ ě z

¸

ď P

˜

ÿ

jPJ

∥∥∥Wj ´ W :
j

∥∥∥ ě z

¸

ď
n

q
P
´∥∥∥Wj ´ W :

j

∥∥∥ ě
q

n
z
¯

,

where we have used that tn{qu ď n{q. Since Wj and W :
j differ only over a σ-algebra that

is q steps in the past, by assumption∥∥∥Wj ´ W :
j

∥∥∥
Lr

ď q ∆Ξ
r pqq,

which implies, by means of the rth moment inequality,

P
´∥∥∥Wj ´ W :

j

∥∥∥ ě
q

n
z
¯

ď P
´

pd2q
1{r´1{2

∥∥∥Wj ´ W :
j

∥∥∥
r

ě
q

n
z
¯

ď
nr

qr´1pd2qr{2´1zr
∆Ξ

r pqq.

where pd2q1{r´1{2 is the operator norm equivalence constant such that ∥¨∥ ě pd2q1{r´1{2∥¨∥r

(Feng, 2003). Therefore,

P

˜∥∥∥∥∥ÿ
jPJ

pWj ´ W :
j q

∥∥∥∥∥ ě z

¸

ď
nr`1

qrpd2qr{2´1zr
∆Ξ

r pqq

as claimed.

Notice that the first term in the bound is weaker than that derived by Chen and
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Christensen (2015). The β-mixing assumption and Berbee’s Lemma give strong control
over the probability Pp∥

ř

jPJpWj ´W :
j q∥ ě zq. In contrast, assuming physical dependence

means we have to explicitly handle a moment condition. One might think of sharpen-
ing Theorem B.4 by sidestepping the rth moment inequality (c.f. avoiding Chebyshev’s
inequality in concentration results), but we do not explore this approach here.

The second step is to map the physical dependence of a generic vector time series
tXiuiPZ to matrix functions.

Proposition B.1. Let tXiuiPZ where Xi “ Gp. . . , ϵi´1, ϵiq P X for tϵjujPZ i.i.d. be a
sequence with finite rth moment, where r ą 0, and functional physical dependence coeffi-
cients

∆rphq “ sup
i

∥∥∥ Xi`h ´ Gphq
pX˚

i , ϵi`1:i`hq
∥∥∥

Lr

for h ě 1. Let Ξi,n “ ΞnpXiq for each i where Ξn : X ÞÑ Rd1ˆd2 be a sequence of measurable
d1 ˆ d2 matrix-valued functions such that Ξn “ pv1, . . . , vd2q for vℓ P Rd1. If ∥Ξi,n∥Lr ă 8

and
CΞ,ℓ :“ sup

xPX
∥∇vℓpxq∥ ď CΞ ă 8,

then matrices Ξi,n have physical dependence coefficients

∆Ξ
r phq “ sup

i

∥∥∥ Ξi,n ´ Ξh˚
i,n

∥∥∥
Lr

ď
a

d1

ˆ

d2

d1

˙1{r

CΞ ∆rphq,

where Ξh˚
i,n “ ΞnpGphqpX 1

i, ϵi`1:i`hqq.

Proof. To derive the bound, we use ΞnpXiq and ΞnpXh˚
i q in place of Ξi,n and Ξh˚

i,n, respec-
tively, where Xh˚

i “ GphqpX˚
i , ϵi`1:i`hq. First we move from studying the operator r-norm

(recall, r ą 2) to the Frobenius norm,∥∥∥ΞnpXiq ´ ΞnpXh˚
i q

∥∥∥
r

ď pd2q
1{2´1{r

∥∥∥ΞnpXiq ´ ΞnpXh˚
i q

∥∥∥
F

.

where as intermediate step we use the 2-norm. Let Ξn “ pv1, . . . , vd2q for vℓ P Rd1 and
ℓ P 1, . . . , d2, so that

∥Ξn∥F “

g

f

f

e

d2
ÿ

ℓ“1
∥vℓ∥2

where vℓ “ pvℓ1, . . . , vℓd1q1. Since vℓ : X ÞÑ Rd1 are vector functions, the mean value
theorem gives that

∥∥∥ΞnpXiq ´ ΞnpXh˚
i q

∥∥∥
F

ď

g

f

f

e

d2
ÿ

ℓ“1
C2

Ξ,ℓ ∥Xi ´ Xh˚
i ∥2 ď

a

d2 CΞ ∥Xi ´ Xh˚
i ∥.

12



Combining results and moving from the vector r-norm to the 2-norm yields∥∥∥ΞnpXiq ´ ΞnpXh˚
i q

∥∥∥
r

ď pd2q
1´1{r

pd1q
1{2´1{r CΞ ∥Xi ´ Xh˚

i ∥r.

The claim involving the Lr norm follows immediately.

The following Corollary, which specifically handles matrix functions defined as outer
products of vector functions, is immediate and covers the setups of series estimation.

Corollary B.1. Under the conditions of Proposition B.1, if

ΞnpXiq “ ξnpXiqξnpXiq
1
` Qn

where ξn : X ÞÑ Rd is a vector function and Qn P Rdˆd is nonrandom matrix, then

∆Ξ
r phq ď d 3{2´2{r Cξ ∆rphq,

where Cξ :“ supxPX ∥∇ξnpxq∥ ă 8.

Proof. Matrix Qn cancels out since it is nonrandom and appears in both ΞnpXiq and
ΞnpXh˚

i q. Since ΞnpXiq is square, the ratio of row to column dimensions simplifies.

The following Corollaries to Theorem B.4 can now be derived in a straightforward
manner.

Corollary B.2. Under the conditions of Theorem B.4 and Proposition B.1, for all z ě 0

P

˜∥∥∥∥∥∥
n
ÿ

i“1
Ξi,n

∥∥∥∥∥∥ ě 6z

¸

ď
nr`1

qrzr
pd2q

2´pr{2`1{rq
pd1q

1{2´1{rCΞ ∆rpqq ` P

˜∥∥∥∥∥∥
ÿ

iPI‚

Ξi,n

∥∥∥∥∥∥ ě z

¸

` 2pd1 ` d2q exp
ˆ

´z2{2
nqS2

n ` qRnz{3

˙

.

where ∆rp¨q if the functional physical dependence coefficient of Xi.

Corollary B.3. Under the conditions of Theorem B.4 and Proposition B.1, if q “ qpnq

is chosen such that

nr`1

qr
pd2q

2´pr{2`1{rq
pd1q

1{2´1{rCΞ ∆rpqq “ op1q

and Rn

a

q logpd1 ` d2q “ opSn

?
nq, then∥∥∥∥∥∥

n
ÿ

i“1
Ξi,n

∥∥∥∥∥∥ “ OP

´

Sn

a

nq logpd1 ` d2q

¯

.

13



This result is almost identical to Corollary 4.2 in Chen and Christensen (2015), with
the only adaptation of using Theorem B.4 as a starting point. Condition Rn

a

q logpd1 ` d2q “

opSn

?
nq is simple to verify by assuming, e.g., q “ opn{ logpnqq since logpd1 `d2q À logpKq

and K “ opnq.

Note that when d1 “ d2 ” K, which is the case of interest in the series regression setup,
the first condition in Corollary B.3 reduces to

K5{2´pr{2`2{rq CΞ ∆rpqq “ op1q,

which also agrees with the rate of Corollary B.1. Assumption 7(i) and a compact domain
further allow to explicitly bound factor CΞ by

CΞ À Kω2 ,

so that the required rate becomes

Kρ ∆rpqq “ op1q, where ρ :“ 3
2 ´

r

2 ` ω2.

Proof of Lemma A.1. The proof follows from Corollary B.3 by the same steps of the
proof of Lemma 2.2 in Chen and Christensen (2015). Simply take

Ξi,n “ n´1
prpbq

K
π pXiq

rpbq
K
π pXiq

1
´ IKq

and note that Rn ď n´1p1 ` ζ2
K,nλ2

K,nq and Sn ď n´2p1 ` ζ2
K,nλ2

K,nq.

For Lemma A.1 to hold under GMC assumptions a valid choice for qpnq is

qpnq “ γ´1 logpKρnr`1
q

where γ as in Proposition A.1. This is due to
ˆ

n

q

˙r`1

qKρ∆rpqq À
nr`1

qr
Kρ expp´γqq

À
nr`1Kρ

logpKρnr`1qr
pKρnr`1

q
´1

“
1

logpKρnr`1qr
“ op1q.

Note then that, if λK,n À 1 and ζK,n À
?

K, since

ζK,nλK,n

c

q log K

n
À

c

K logpKρnr`1q logpKq

n
À

c

K logpnρ`r`2q logpnq

n
À

c

K logpnq2

n
,

14



to satisfy Assumption 9 we may assume
a

K logpnq2{n “ op1q as in Remark 2.3 of Chen
and Christensen (2015) for the case of exponential β-mixing regressors.

B.3 Theorem 3.1

Before delving into the proof of Theorem 3.1, note that we can decompose pΠ2 ´ Π2 as

pΠ2 ´ Π2 “ ppΠ2 ´ pΠ˚
2q ` ppΠ˚

2 ´ rΠ2q ` prΠ2 ´ Π2q,

where rΠ2 is the projection of Π2 onto the linear space spanned by the sieve. The last two
terms can be handled directly with the theory developed by Chen and Christensen (2015).
Specifically, their Lemma 2.3 controls the second term (variance term), while Lemma 2.4
handles the third term (bias term). This means here we can focus on the first term, which
is due to using generated regressors pϵ1t in the second step.

Since pΠ2 can be decomposed in dY rows of semiparametric coefficients, we further
reduce to the scalar case. Let π2 be any row of Π2 and, with a slight abuse of notation, Y

the vector of observations of the component of Yt of the same row, so that one may write

pπ2pxq ´ pπ˚
2 pxq “ rbK

π pxq
`

p

rB1
π
p

rBπ

˘´`
p

rBπ ´ rBπ

˘1
Y `rbK

π pxq

„

`

p

rB1
π
p

rBπ

˘´
´
`

rB1
π
rBπ

˘´

ȷ

rB1
πY

“ I ` II

where rbK
π pxq “ Γ´1{2

B,2 bK
π pxq is the orthonormalized sieve according to ΓB,2 :“ ErbK

π pW2tq

bK
π pW2tq

1s, rBπ is the infeasible orthonormalized design matrix (involving ϵ1t) and p

rBπ is
feasible orthonormalized design matrix (involving pϵ1t). In particular, note that

pBπ “ Bπ ` Rn, where Rn :“

»

–

0 0 pϵ11 ´ ϵ11
... ¨ ¨ ¨

... ...
0 0 pϵ1n ´ ϵ1n

fi

fl P RnˆK ,

which implies p

rBπ ´ rBπ “ Rn Γ´1{2
B,2 “: rRn.

The next Lemma provides a bound for the difference p
p

rB1
π
p

rBπ{nq ´ p rB1
π
rBπ{nq that will

be useful in the proof of Theorem 3.1 below.

Lemma B.2. Under the setup of Theorem 1 in Chen and Christensen (2015), it holds
∥∥∥p
p

rB1
π
p

rBπ{nq ´ p rB1
π
rBπ{nq

∥∥∥ “ OP p
a

K{nq.

Proof. Using the expansion p

rB1
π
p

rBπ “ rB1
π
rBπ ` p rB1

π
rRn ` rR1

n
rBπq ` rR1

n
rRn, one immediately

finds that
∥∥∥p
p

rB1
π
p

rBπ{nq ´ p rB1
π
rBπ{nq

∥∥∥ ď 2
∥∥∥ rB1

π
rRn{n

∥∥∥ `
∥∥∥ rR1

n
rRn{n

∥∥∥. The second right-hand
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side factor satisfies
∥∥∥ rR1

n
rRn{n

∥∥∥ ď λ2
K,n

∥∥∥R1
nRn{n

∥∥∥. Moreover,

∥∥∥R1
nRn{n

∥∥∥ “

∥∥∥∥∥∥ 1
n

n
ÿ

t“1
ppϵ1t ´ ϵ1tq

2

∥∥∥∥∥∥ “

∥∥∥∥∥∥ 1
n

n
ÿ

t“1
pΠ1 ´ pΠ1q

1W1tW
1
1tpΠ1 ´ pΠ1q

∥∥∥∥∥∥
ď

∥∥∥Π1 ´ pΠ1

∥∥∥2 ∥∥∥W 1
1W1{n

∥∥∥ “ OP pn´1
q,

since ∥W 1
1W1{n∥ “ OP p1q. Under Assumption 8, λ2

K,n{n “ oP p
a

K{nq since B-splines
and wavelets satisfy λK,n À 1. Consequently,

∥∥∥ rR1
n
rRn{n

∥∥∥ “ oP p
a

K{nq. Factor ∥ rB1
πRn{n∥

is also straightforward, but depends on sieve dimension K,

∥∥∥ rB1
πRn{n

∥∥∥ ď

∥∥∥∥∥∥ 1
n

n
ÿ

t“1

rbK
π pW2tqppϵ1t ´ ϵ1tq

∥∥∥∥∥∥ “

∥∥∥∥∥∥ 1
n

n
ÿ

t“1

rbK
π pW2tqW

1
1tpΠ1 ´ pΠ1q

∥∥∥∥∥∥
ď

∥∥∥Π1 ´ pΠ1

∥∥∥ ∥∥∥ rB1
πW1{n

∥∥∥ “ OP p
a

K{nq,

since ∥ rB1
πW1{n∥ “ OP p

?
Kq as the column dimension of W1 is fixed. The claim then

follows by noting OP p
a

K{nq is the dominating order of convergence.

Proof of Theorem 3.1. Since pΠ1 is a least squares estimator of a linear equation, the
rate of convergence is the parametric rate n´1{2. The first result is therefore immediate.
For the second step, we use

∥∥∥pΠ2 ´Π2

∥∥∥
8

ď
∥∥∥pΠ2 ´ pΠ˚

2

∥∥∥
8

`
∥∥∥pΠ˚

2 ´Π2

∥∥∥
8

, and bound explicitly
the first right-hand side term. For a given component of the regression function,

|pπ2pxq ´ pπ˚
2 pxq| ď |I| ` |II|.

We now control each term on the right side.

(1) It holds

|I| ď ∥rbK
π pxq∥

∥∥∥` prB1
π
p

rBπ{n
˘´

∥∥∥ ∥∥∥` prBπ ´ rBπ

˘1
Y {n

∥∥∥
ď sup

xPW2

∥rbK
π pxq∥

∥∥∥` prB1
π
p

rBπ{n
˘´

∥∥∥ ∥∥∥` prBπ ´ rBπ

˘1
Y {n

∥∥∥
ď ζK,nλK,n

∥∥∥` prB1
π
p

rBπ{n
˘´

∥∥∥ ∥∥∥` prBπ ´ rBπ

˘1
Y {n

∥∥∥.

Let An denote the event on which
∥∥∥ prB1

π
p

rBπ{n ´ IK

∥∥∥ ď 1{2, so that
∥∥∥` prB1

π
p

rBπ{n
˘´

∥∥∥ ď 2

on An. Notice that since ∥p
p

rB1
π
p

rBπ{nq ´ p rB1
π
rBπ{nq∥ “ oP p1q (Lemma B.2) and, by

assumption, ∥ rB1
π
rBπ{n ´ IK∥ “ oP p1q, then PpAc

nq “ op1q. On An, then

|I| À ζK,nλ2
K,n

∥∥∥` pBπ ´ Bπ

˘1
Y {n

∥∥∥ “ ζK,nλ2
K,n

∥∥∥R1
nY {n

∥∥∥.

From R1
nY “

řn
t“1 bK

π pW2tqppϵ1t ´ ϵ1tqYt “ pΠ1 ´ pΠ1q1W 1
1Y it follows that

∥∥∥R1
nY {n

∥∥∥ ď
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∥∥∥Π1 ´ pΠ1

∥∥∥ ∥∥∥W 1
1Y {n

∥∥∥ on An, meaning |I| “ OP

`

ζK,nλ2
K,n{

?
n
˘

as ∥W 1
1Y {n∥ “ OP p1q

and PpAc
nq “ op1q.

(2) Again we proceed by uniformly bounding II according to

|II| ď ζK,nλK,n

∥∥∥` prB1
π
p

rBπ{n
˘´

´
`

rB1
π
rBπ{n

˘´
∥∥∥ ∥∥∥ rB1

πY {n
∥∥∥.

The last factor has order ∥ rB1
πY {n∥ “ OP p

?
Kq since rBπ is growing in row dimension

with K. For the middle term, introduce ∆B :“ p

rB1
π
p

rBπ{n ´ rB1
π
rBπ{n and event

Bn :“
!∥∥∥` rB1

π
rBπ{n

˘´ ∆B

∥∥∥ ď 1{2
)

X

!∥∥∥ rB1
π
rBπ{n ´ IK

∥∥∥ ď 1{2
)

. On Bn, we can apply
the bound (Horn and Johnson, 2012)

∥∥∥` prB1
π
p

rBπ{n
˘´

´
`

rB1
π
rBπ{n

˘´
∥∥∥ ď

∥p rB1
π
rBπ{nq´∥2 ∥∆B∥

1 ´ ∥p rB1
π
rBπ{nq´ ∆B∥

À
∥∥∥ prB1

π
p

rBπ{n ´ rB1
π
rBπ{n

∥∥∥.

Since
∥∥∥ prB1

π
p

rBπ{n ´ rB1
π
rBπ{n

∥∥∥ “ OP p
a

K{nq by Lemma B.2, we get

|II| “ OP

ˆ

ζK,nλK,n
K
?

n

˙

on Bn. Finally, using PppA X Bqcq ď PpAcq ` PpBcq we note that PpBc
nq “ op1q so

that the bound asymptotically holds irrespective of event Bn.

Thus, we have shown that

|pπ2pxq ´ pπ˚
2 pxq| ď OP

ˆ

ζK,nλ2
K,n

1
?

n

˙

` OP

ˆ

ζK,nλK,n
K
?

n

˙

“ OP

ˆ

ζK,nλK,n
K
?

n

˙

as clearly
?

n
´1

“ opK{
?

nq and, as discussed in the proof of Lemma B.2, λ2
K,n{n “

oP p
a

K{nq. This bound is uniform in x and holds for each of the (finite number of)
components of pΠ2, therefore the proof is complete.

B.4 Theorem 4.1

Before proving impulse response consistency, we show that the functional moving average
coefficient matrices Γj can be consistently estimated with pΠ1 and pΠ2.

Lemma B.3. Under the assumptions of Theorem 3.1 and for any fixed integer j ě 0, it
holds

∥pΓj ´ Γj∥8 “ oP p1q.

Proof. By definition, recall that ΓpLq “ ΨpLqGpLq where Ψ “ pId ´ ApLqLq´1. Since
ΨpLq is an MA(8) lag polynomial, we have that ΓpLq “ p

ř8

k“0 ΨkLkqpG0 ` G1L ` . . .

` GpLpq, where Ψ0 “ Id, tΨku8
k“1 are purely real matrices and G0 is a functional vector
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that may also contain linear components (i.e. allow linear functions of Xt). This means
that Γj is a convolution of real and functional matrices, Γj “

řmintj, pu

k“1 Ψj´kGk. The linear
coefficients of ApLq can be consistently estimated by pΠ1 and pΠ2, and, thus, the plug-in
estimate pΨj is consistent for Ψj (Lütkepohl, 2005). Therefore,

∥pΓj ´ Γj∥8 ď

mintj, pu
ÿ

k“1

∥∥∥Ψj´k ´ pΨj´k

∥∥∥
8

∥Gk∥
8

`
∥∥∥pΨj´k

∥∥∥
8

∥∥∥Gk ´ pGk

∥∥∥
8

ď

mintj, pu
ÿ

k“1
opp1qCG,k ` OP p1qopp1q “ opp1q,

where CG,k is a constant and ∥Gk ´ pGk∥8 “ opp1q as a direct consequence of Theorem 3.1.

Recall now that the sample estimate for the relaxed-shock impulse response is

y

ĄIRFh,ℓpδq “ pΘh,¨1δ n´1
n
ÿ

t“1
ρppϵ1tq `

h
ÿ

j“0

pVj,ℓpδq

where

pVj,ℓpδq “
1

n ´ j

n´j
ÿ

t“1
pvj,ℓ

`

Xt`j:t;
p

rδt

˘

“
1

n ´ j

n´j
ÿ

t“1

„

pΓjpγjpXt`j:t;
p

rδtq ´ pΓjXt`j

ȷ

.

Therefore, the estimated horizon h impulse response of the ℓth variable is

y

ĄIRFh,ℓpδq :“ pΘh,ℓ1δ n´1
n
ÿ

t“1
ρppϵ1tq `

h
ÿ

j“0

«

1
n ´ j

n´j
ÿ

t“1
pvj,ℓ

`

Xt`j:t;
p

rδt

˘

ff

.

Lemma B.4. Under the assumptions of Theorem 4.1 , let xj:0 “ pxj, . . . , x0q P X j and
ε P E1 be nonrandom quantities. Let rδ be the relaxed shock determined by δ, ρ and ε.
Then,

(i) supxj:0,ε|pγjpxj:0; rδq ´ γjpxj:0; rδq| “ oP p1q ,

(ii) supxj:0,ε|pvj,ℓ

`

xj:0; rδ
˘

´ vj,ℓ

`

xj:0; rδ
˘

|“ oP p1q ,

for any fixed integers j ě 0 and ℓ P t1, . . . , du.

Proof.

(i) We have that

|pγjpxj:0; δq ´ γjpxj:0; δq| “

∣∣∣∣∣∣
j
ÿ

k“1

”

ppΓk,11xj´kprδq ´ pΓk,11xj´kq ´ pΓk,11xj´kprδq ´ Γk,11xj´kq

ı

∣∣∣∣∣∣
18



ď

j
ÿ

k“1

∣∣∣pΓk,11xj´kprδq ´ Γk,11xj´kprδq
∣∣∣ `

j
ÿ

k“1

∣∣∣pΓk,11xj´k ´ Γk,11xj´k

∣∣∣ .

This yields supxj:0,ε |pγjpxj:0; rδq ´ γjpxj:0; rδq| ď 2j supxPX

∣∣∣pΓk,11x ´ Γk,11x
∣∣∣ . Since j is

finite and fixed and the uniform consistency bound of Lemma B.3 holds, a fortiori
supxPX

∣∣∣pΓk,11x ´ Γk,11x
∣∣∣ “ oP p1q.

(ii) Similarly to above,

|pvj,ℓ

`

xj:0; rδ
˘

´ vj,ℓ

`

xj:0; rδ
˘

| “

∣∣∣∣´pΓj,ℓpγjpxj:0; rδq ´ Γj,ℓγjpxj:0; rδq

¯

´

´

pΓj,ℓxj ´ Γj,ℓxj

¯

∣∣∣∣
ď ∥pΓj,ℓ ´ Γj,ℓ∥8 ` ∥Γj,ℓ∥8|pγjpxj:0; δq ´ γjpxj:0; δq|

` |pΓj,ℓxj ´ Γj,ℓxj|

ď 2∥pΓj,ℓ ´ Γj,ℓ∥8 ` CΓ,j,l |pγjpxj:0; δq ´ γjpxj:0; δq|,

where we have used that γjpxj:0; rδq P X to derive the first term in the second line.
In the last line, CΓ,j,l is a constant such that ∥Γj,ℓ∥8 ď

řmintj, pu

k“1 ∥Ψj´k∥8∥Gk∥8 ď

CΓ,j,l. The claim then follows thanks to Lemma B.3 and (i).

In what follows, define pvj,ℓ

`

Xt`j:t; rδt

˘

to be a version of vj,ℓ that is constructed using
coefficient estimates from tpΠ1, pΠ2u but evaluated on the true innovations ϵt.

Proof of Theorem 4.1. If we introduce

ĄIRFh,ℓpδq
˚ :“ pΘh,ℓ1δ n´1

n
ÿ

t“1
ρpϵ1tq `

h
ÿ

j“0

«

1
n ´ j

n´j
ÿ

t“1
pvj,ℓ

`

Xt`j:t; rδt

˘

ff

,

then clearly∣∣∣∣yĄIRFh,ℓpδq ´ ĄIRFh,ℓpδq

∣∣∣∣ ď

∣∣∣∣yĄIRFh,ℓpδq ´ ĄIRF
˚

h,ℓpδq

∣∣∣∣ `
∣∣∣ĄIRF

˚

h,ℓpδq ´ ĄIRFh,ℓpδq
∣∣∣

“ I ` II.

To control II, we can observe

II ď

∣∣∣∣∣∣pΘh,ℓ1δ n´1
n
ÿ

t“1
ρpϵ1tq ´ Θh,ℓ1δErρpϵ1tqs

∣∣∣∣∣∣
`

h
ÿ

j“0

∣∣∣∣∣∣ 1
n ´ j

n´j
ÿ

t“1
pvj,ℓ

`

Xt`j:t; rδt

˘

´ Ervj,ℓ

`

Xt`j:t; rδ
˘

s

∣∣∣∣∣∣
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ď δ
∣∣∣pΘh,ℓ1 ´ Θh,ℓ1

∣∣∣
∣∣∣∣∣∣n´1

n
ÿ

t“1
ρpϵ1tq

∣∣∣∣∣∣ ` δ
∣∣∣pΘh,ℓ1

∣∣∣
∣∣∣∣∣∣n´1

n
ÿ

t“1
ρpϵ1tq ´ Erρpϵ1tqs

∣∣∣∣∣∣
`

h
ÿ

j“0

∣∣∣∣∣∣ 1
n ´ j

n´j
ÿ

t“1
pvj,ℓ

`

Xt`j:t; rδt

˘

´ Ervj,ℓ

`

Xt`j:t; rδ
˘

s

∣∣∣∣∣∣
ď δ

∣∣∣pΘh,ℓ1 ´ Θh,ℓ1

∣∣∣
∣∣∣∣∣∣n´1

n
ÿ

t“1
ρpϵ1tq

∣∣∣∣∣∣ ` δ
∣∣∣pΘh,ℓ1

∣∣∣
∣∣∣∣∣∣n´1

n
ÿ

t“1
ρpϵ1tq ´ Erρpϵ1tqs

∣∣∣∣∣∣
`

h
ÿ

j“0

∣∣∣∣∣∣ 1
n ´ j

n´j
ÿ

t“1
pvj,ℓ

`

Xt`j:t; rδt

˘

´ vj,ℓ

`

Xt`j:t; rδt

˘

∣∣∣∣∣∣
`

h
ÿ

j“0

∣∣∣∣∣∣ 1
n ´ j

n´j
ÿ

t“1
vj,ℓ

`

Xt`j:t; rδt

˘

´ Ervj,ℓ

`

Xt`j:t; rδ
˘

s

∣∣∣∣∣∣ .

The first two terms in the last bound are oP p1q since
∣∣∣pΘh,ℓ1 ´ Θh,ℓ1

∣∣∣ “ oP p1q, as discussed
in Lemma B.3, and n´1 řn

t“1 ρpϵ1tq
p

Ñ Erρpϵ1tqs by a WLLN. For the other terms in the
last sum above, we similarly note that∣∣∣∣∣∣ 1

n ´ j

n´j
ÿ

t“1
pvj,ℓ

`

Xt`j:t; rδt

˘

´ vj,ℓ

`

Xt`j:t; rδt

˘

∣∣∣∣∣∣ “ oP p1q

from Lemma B.4, while, thanks again to a WLLN, it holds∣∣∣∣∣∣ 1
n ´ j

n´j
ÿ

t“1
vj,ℓ

`

Xt`j:t; rδt

˘

´ Ervj,ℓ

`

Xt`j:t; rδ
˘

s

∣∣∣∣∣∣ “ oP p1q.

Since h is fixed finite, this implies that II “ oP p1q.
Considering now I, we can write

I ď δ
∣∣∣pΘh,ℓ1

∣∣∣
∣∣∣∣∣∣n´1

n
ÿ

t“1
ρppϵ1tq ´ ρpϵ1tq

∣∣∣∣∣∣ `

h
ÿ

j“0

∣∣∣∣∣∣ 1
n ´ j

n´j
ÿ

t“1
pvj,ℓ

`

Xt`j:t;
p

rδt

˘

´ pvj,ℓ

`

Xt`j:t; rδt

˘

∣∣∣∣∣∣
“ I 1

` I2.

Since by assumption ρ is a bump function, thus continuously differentiable over the range
of ϵt, by the mean value theorem∣∣∣∣∣∣n´1

n
ÿ

t“1
ρppϵ1tq ´ ρpϵ1tq

∣∣∣∣∣∣ ď n´1
n
ÿ

t“1
|ρ1

t|
∣∣∣pϵ1t ´ ϵ1t

∣∣∣
for a sequence tρ1

tu
n
t“1 of evaluations of first-order derivative ρ1 at values ϵt in the interval

with endpoint ϵt and pϵt. One can use |ρ1
t| ď Cρ1 with a finite positive constant Cρ1 , and
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by recalling that pϵ1t ´ ϵ1t “ pΠ1 ´ pΠ1q1W1t one, thus, gets∣∣∣∣∣∣n´1
n
ÿ

t“1
ρppϵ1tq ´ ρpϵ1tq

∣∣∣∣∣∣ ď Cρ1

1
n

n
ÿ

t“1

∣∣∣pΠ1 ´ pΠ1q
1W1t

∣∣∣ ď Cρ1∥Π1 ´ pΠ1∥2
1
n

n
ÿ

t“1
∥W1t∥2 “ oP p1q.

This proves that term I 1 is itself oP p1q. Finally, to control I2, we use that by construction
estimator pΠ2 is composed of sufficiently regular functional elements i.e. B-spline estimates
of order 1 or greater. Thanks again to the mean value theorem∣∣∣∣∣∣ 1

n ´ j

n´j
ÿ

t“1
pvj,ℓ

`

Xt`j:t;
p

rδt

˘

´ pvj,ℓ

`

Xt`j:t; rδt

˘

∣∣∣∣∣∣ ď
1

n ´ j

n´j
ÿ

t“1

∣∣∣∣pvj,ℓ

`

Xt`j:t;
p

rδt

˘

´ pvj,ℓ

`

Xt`j:t; rδt

˘

∣∣∣∣
ď C

pv1,j,ℓ
1

n ´ j

n´j
ÿ

t“1

∣∣∣pϵ1t ´ ϵ1t

∣∣∣
for any fixed j and some C

pv1,j,ℓ ą 0. This holds since pvj,ℓ is uniformly continuous by
construction. Note that we have assumed that the nonlinear part of Π2 belongs to a
Hölder class with smoothness s ą 1 (for simplicity, assume here that s is integer, otherwise
a similar argument can be made). Then, even though C

pv1,j,ℓ depends on the sample, it is
bounded above in probability for n sufficiently large. Following the discussion of term I 1,
we deduce that the last line in the display above is opp1q. As h is finite and independent
of n, it follows that also I2 is of order oP p1q.

Finally, to obtain uniformity with respect to δ P r´D, Ds, simply note that bounds
on I and II are explicit in δ, therefore

sup
δPr´D,Ds

∣∣∣∣yĄIRFh,ℓpδq ´ ĄIRFh,ℓpδq

∣∣∣∣ ď D ˆ oP p1q,

concluding the proof.

C Simulation Details

C.1 Benchmark Bivariate Design

The first simulation setup involves a bivariate DGP where the structural shock does not
directly affect other observables. This is a simple environment to check that indeed the
two-step estimator recover the nonlinear component of the model and impulse responses
are consistently estimated, and that the MSE does not worsen excessively.

I consider three bivariate data generation processes. DGP 1 sets Xt to be a fully
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exogenous innovation process,

Xt “ ϵ1t,

Yt “ 0.5Yt´1 ` 0.5Xt ` 0.3Xt´1 ´ 0.4 maxp0, Xtq ` 0.3 maxp0, Xt´1q ` ϵ2t.
(18)

DGP 2 adds an autoregressive component to Xt, but maintains exogeneity,

Xt “ 0.5Xt´1 ` ϵ1t,

Yt “ 0.5Yt´1 ` 0.5Xt ` 0.3Xt´1 ´ 0.4 maxp0, Xtq ` 0.3 maxp0, Xt´1q ` ϵ2t.
(19)

Finally, DGP 3 add an endogenous effect of Yt´1 on the structural variable by setting

Xt “ 0.5Xt´1 ` 0.2Yt´1 ` ϵ1t,

Yt “ 0.5Yt´1 ` 0.5Xt ` 0.3Xt´1 ´ 0.4 maxp0, Xtq ` 0.3 maxp0, Xt´1q ` ϵ2t.
(20)

Following Assumption 1, innovations are mutually independent. To accommodate As-
sumption 4, both ϵ1t and ϵ2t are drawn from a truncated standard Gaussian distribution
over r´3, 3s.6 All DGPs are centered to have zero intercept in population.

We evaluate bias and MSE plots using 10 000 Monte Carlo simulation. For a chosen
horizon H, the impact of a relaxed shock on ϵ1t is evaluated on Yt`h for h “ 1, . . . , H.
To compute the population IRF, we employ a direct simulation strategy that replicates
the shock’s propagation through the model and we use 105 replications. To evaluate the
estimated IRF, the two-step procedure is implemented: a sample of length n is drawn,
the linear least squares and the semiparametric series estimators of the model are used to
estimate the model and the relaxed IRF is computed following Proposition 2.1. For the
sake of brevity, we discuss the case of δ “ 1 and we set the shock relaxation function to
be

ρpzq “ Itx ď 3u exp
˜

1 `

„∣∣∣∣z3
∣∣∣∣4 ´ 1

ȷ´1
¸

It can be easily checked that this choice of ρ is compatible with shocks of size 0 ď |δ| ď 1.
Choices of δ “ ´1 and δ “ ˘0.5 yield similar results in simulations, so we do not discuss
them here.

Figure D.1 contains the results for sample size n “ 240. This choice is motivated
by considering the average sample sizes found in most macroeconometric settings: it is
equivalent to 20 years of monthly data or 60 yearly of quarterly data (Gonçalves et al.,
2021). The benchmark method is an OLS regression that relies on a priori knowledge
of the underlying DGP specification. Given the moderate sample size, to construct the

6Let eit „ N p0, 1q for i “ 1, 2, then the truncated Gaussian innovations used in simulation are set to
be ϵit “ minpmaxp´3, eitq, 3q. The resulting r.v.s have a non-continuous density with two mass points at
-3 and 3. However, in practice, since these masses are negligible, for the moderate sample sizes used this
choice does not create issues.
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cubic spline sieve estimator of the nonlinear component of the model we use a single knot,
located at 0. The simulations in Figure D.1 show that while the MSE is slighlty higher
for the sieve model, the bias is comparable across methods. Note that for DGP 3, due to
the dependence of the structural variable on non-structural series lags, the MSE and bias
increase significantly, and there is no meaningful difference in performance between the
two estimation approaches.

C.2 Structural Partial Identification Design

To showcase the validity of the proposed sieve estimator under the type of partial struc-
tural identification discussed in the paper, we again rely on the simulation design proposed
by Gonçalves et al. (2021). All specifications are block-recursive, and require estimating
the contemporaneous effects of a structural shock on non-structural variables, unlike in
the previous section.

The form of the DGPs is

B0Zt “ B1Zt´1 ` C0fpXtq ` C1fpXt´1q ` ϵt,

where in all variations of the model

B0 “

« 1 0 0
´0.45 1 ´0.3
´0.05 0.1 1

ff

, C0 “

« 0
´0.2
0.08

ff

, and C1 “

« 0
´0.1
0.2

ff

.

I focus on the case fpxq “ maxp0, xq, since this type of nonlinearity is simpler to study.
DGP 4 treats Xt as an exogenous shock by setting

B1 “

« 0 0 0
0.15 0.17 ´0.18

´0.08 0.03 0.6

ff

;

DGP 5 add serial correlation to Xt,

B1 “

«

´0.13 0 0
0.15 0.17 ´0.18

´0.08 0.03 0.6

ff

;

and DGP 6 includes dependence on Yt´1,

B1 “

«

´0.13 0.05 ´0.01
0.15 0.17 ´0.18

´0.08 0.03 0.6

ff

.

For these data generating processes, we employ the same setup of simulations with DGPs
1-3, including the number of replications as well as the type of relaxed shock. as well
as the sieve grid. Here too we evaluate MSE and bias of both the sieve and the correct
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specification OLS estimators with as sample size of n “ 240 observations. The results in
Figure D.2 show again that there is little difference in terms of performance between the
semiparametric sieve approach and a correctly-specified OLS regression.

C.3 Model Misspecification

The results from benchmark simulations support the use of the sieve IRF estimator in a
sample of moderate size, since it performs comparably to a regression performed with a
priori knowledge of the underlying DGP. We now show that the semiparametric approach
is also robust to model misspecification compared to simpler specifications involving fixed
choices for nonlinear transformations.

To this end, we modify DGP 2 to use a smooth nonlinear transformation to define
the effect of structural variable Xt on Yt. That is, there is no compounding of linear and
nonlinear effects. The autoregressive coefficient in the equation for Xt is also increased
to make the shock more persistent. The new data generating process, DGP 7, is, thus,
given by

Xt “ 0.8Xt´1 ` ϵ1t,

Yt “ 0.5Yt´1 ` 0.9φpXtq ` 0.5φpXt´1q ` ϵ2t.
(21)

where φpxq :“ px ´ 1qp0.5 ` tanhpx ´ 1q{2q.
To emphasize the difference in estimated IRFs, in this setup we focus on δ “ ˘2,

which requires adapting the choice of innovations and shock relaxation function. In sim-
ulations of DGP 7, ϵ1t and ϵ2t are both drawn from a truncated standard Gaussian dis-
tribution over r´5, 5s. The shock relaxation function of this setup is given by

ρpzq “ Itx ď 5u exp
˜

1 `

„∣∣∣∣z5
∣∣∣∣3.9

´ 1
ȷ´1

¸

.

This form of ρ is adapted to choices of δ such that 0 ă |δ| ď 2. The sieve grid now consists
of 4 equidistant knots within p´5, 5q. We use the same numbers of replications as in the
previous simulations. Finally, the regression design is identical to that used for DGP 2
under correct specification.

The results obtained with sample size n “ 2400 are collected in Figure D.3. We choose
this larger sample size to clearly showcase the inconsistency of impulse responses under
misspecification: as it can be observed, the simple OLS estimator involving the negative-
censoring transform produces IRF estimates with consistently worse MSE and bias than
those of the sieve estimator at almost all horizons. Similar results are also obtained for
more moderate shocks δ “ ˘1, but the differences are less pronounced. These simulations
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suggest that the semiparametric sieve estimator can produce substantially better IRF
estimates in large samples than methods involving nonlinear transformations selected a
priori.

In this setup, it is also important to highlight the fact that the poor performance of
OLS IRF estimates does not come from φpxq being “complex”, and, thus, hard to approx-
imate by combinations of simple functions. In fact, if in DGP 7 function φ is replaced
by rφpxq :“ φpx ` 1q, the differences between sieve and OLS impulse response estimates
become minimal in simulations, with the bias of the latter decreasing by approximately
an order of magnitude, see Figure D.4. This is simply due to the fact that rφpxq is well
approximated by maxp0, xq directly. However, one then requires either prior knowledge
or sheer luck when constructing the nonlinear transforms of Xt for an OLS regression.
The proposed series estimator, instead, just requires an appropriate choice of sieve. Many
data-driven procedures to select sieves in applications have been proposed, see for example
the discussion in Kang (2021).
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Figure D.1: Simulations results for DGPs 1-3.
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Figure D.2: Simulations results for DGPs 4-6.
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Figure D.3: Simulations results for DGP 7.
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Figure D.4: Simulation results for DGP 7 when considering rφ in place of φ.
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Figure D.5: Estimated nonlinear regression functions for the narrative U.S. monetary
policy variable. Contemporaneous (left side) and one-period lag (right side) effects are
shown, linear and nonlinear functions. For comparison, linear VAR coefficients (dark
gray) and the identity map (light gray, dashed) are shown as lines.
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Figure D.6: Robustness plots for U.S. monetary policy shock when changing knots com-
pared to those used in Figure 3. Note that linear and parametric nonlinear responses do
not change.

31



GDP

0 5 10 15 20
Quarters

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
Linear
Nonlin-par
Sieve

0 5 10 15 20
Quarters

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 5 10 15 20
Quarters

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 5 10 15 20
Quarters

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 5 10 15 20
Quarters

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 5 10 15 20
Quarters

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Figure D.7: Relative changes in the GDP impulse responses function when the size of
the shock is reduced from that used in Figure 3. The standard deviation of Xt ” ϵ1t is
σϵ,1 « 0.5972. Linear IRFs are re-scaled such that for all values of δ the linear response at
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Figure D.8: Estimated nonlinear regression functions for the 3M3M subjective interest
rate uncertainty measure. One-period (left side) and two-period lag (right side) effects are
shown, combining linear and nonlinear functions. For comparison, linear VAR coefficients
(dark gray) and the identity map (light gray, dashed) are shown as lines.
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Figure D.9: Comparison of histograms and shock relaxation function for a positive (left)
and negative (right) shock in monetary policy. Original (blue) versus shocked (orange)
distribution of the sample realization of ϵ1t. The dashed vertical line is the mean of the
original distribution, while the solid vertical line is the mean after the shock.
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Figure D.10: Left: Histograms and shock relaxation function for a one-standard-deviation
shock in interest rate uncertainty. Original (blue) versus shocked (orange) distribution
of the sample realization of ϵ1t. The dashed vertical line is the mean of the original
distribution, while the solid vertical line is the mean after the shock. Right: Envelope
(min-max) of shocked paths for one-standard-deviation impulse response.
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Figure D.11: Relative changes in the industrial production impulse responses function
when the size of the shock is reduced from that used in Figure 4. The standard deviation
of ” ϵ1t is σϵ,1 « 0.0389. Linear IRFs are re-scaled such that for all values of δ the linear
response at h “ 0 is one in absolute value. Nonlinear IRFs are re-scaled by δ times the
linear response scaling factor.
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Figure D.12: Relative changes in the CPI impulse responses function when the size of
the shock is reduced from that used in Figure 4. The standard deviation of ” ϵ1t is
σϵ,1 « 0.0389. Linear IRFs are re-scaled such that for all values of δ the linear response at
h “ 0 is one in absolute value. Nonlinear IRFs are re-scaled by δ times the linear response
scaling factor.
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