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1 Introduction

This paper presents a semi-nonparametric method to study the structural dynamic effects of
unpredictable shocks in a class of nonlinear time series models.

Linear models are the foundation of economic structural time series modeling. The nature
of linear models makes them especially tractable and apt at describing fundamental interactions
and processes. For example, large classes of macroeconomic models in modern New Keynesian
theory can be reduced to linear VARMA form via linearization techniques. This often justifies the
application of the linear time series toolbox from a theoretical point of view. Concurrently, the
work of Sims (1980) on VARs reinvigorated the strain of macroeconometric literature that seeks
to study dynamic economic relationships. Brockwell and Davis (1991), Hamilton (1994b) and
Liitkepohl (2005) provide detailed overviews of linear time series modeling and its developments.
When the objects of interest are solely dynamic effects, the local projection (LP) approach of
Jorda (2005) has also gained popularity as an alternative thanks to its flexibility and ease of
implementation. LPs do not directly impose a linear model on the conditional distribution
of the time series, but rather consist of linear lag regressions. Throughout this paper, the
key dynamic effect under discussion will be the impulse response function (IRF), which is the
common inference object of both linear VARMA and LP analyses.

Nonlinear methods seek to flexibly study the dependence structure between variables of
interest by accommodating a potentially complex model structure. In recent years, research in
nonlinear and asymmetric effects has grown, partly due to the increasing availability of data,
making it feasible to estimate more elaborate models (Fuleky, 2020). From a macroeconomic
perspective, one can imagine at least three broad categories of nonlinearities that may be impor-
tant to study. Sign-dependence of impulse responses is a potential key factor in the evaluation
of monetary policy, as the specific effects of an interest rate change might be mitigated if the
central bank implements a rate drop rather than a rate hike, while some others might be en-
hanced (Debortoli et al., 2020). If impulse responses are size-sensitive, large shocks and small
shocks can have vastly different economic impacts, meaning that the policymaker must account
for nonlinear scaling in the intensity of an intervention (Tenreyro and Thwaites, 2016). Finally,
if the researcher’s objective lies in studying exogenous changes impacting a variable that is non-
linear by definition, such as volatility indexes, any valid structural model should account for this
feature.

The main contribution of this work is the development of an approach that allows estimating
structural IRFs which can account for general nonlinear effects. This goal entails solving two
related issues: first, structural identification of shocks, so that it is possible to give a valid
economic interpretation to impulse responses; second, estimation of nonlinear functions in the
setting of dependent data. In a linear setup, identification and estimation can be considered as
distinct problems, but when working with nonlinear models these questions become intertwined.
Without specific assumptions, nonlinear model classes are much too vast in terms of complexity:
there are too many channels for any variable to affect any other. Disentangling such channels

thus becomes impossible, and one cannot structurally interpret IRFs and dynamic effects such



as multipliers. This problem can be solved by being more precise about the classes of models
one is willing to entertain. I consider the structural nonlinear framework originally proposed by
Gongalves et al. (2021), which involves selecting one variable to identify the structural shocks of
interest, X;, and treating it separately from all other series, a vector Y;, included in the model.
By imposing a few additional assumptions on the dependence structure of innovations, one is able
to include general nonlinear effects of X; and its lags onto Y;. By further allowing the lags of Y; to
influence X4, this setup permits nonlinear dynamics to propagate to all variables over time. The
significant upside of this paradigm is that structural identification is built-in, instead of being
treated as a separate step. The latter path is most often taken in the literature by implementing
the generalized impulse response function (GIRF) proposed by Koop et al. (1996). Kilian and
Liitkepohl (2017) have, however, highlighted that common linear identification strategies such as
long-term and sign restrictions are generally impossible to impose in general nonlinear models,
since closed-form expressions are not available but in a handful of special cases.

A weakness of the framework in Gongalves et al. (2021) is that it requires choosing a specific
functional form for the nonlinear components of the model, such as the negative-censoring
map or a cubic map. These are used to tease out the sign and size effects of shocks.! Yet,
correct prior knowledge of such terms is often unreasonable, especially in multivariate, multi-lag
models. The natural way to avoid selecting a parametric nonlinear specification is to resort
to semi-nonparametric techniques. Nonparametric time series methods have a long history in
econometrics (Hérdle et al., 1997), but until recently not much progress has been made in
applying them to studying dynamic effects. Impulse response functions are objects that depend
on the global properties of the model and, to be more precise, defining an IRF requires iterating
shock perturbations over time. In a nonlinear model, the perturbation depends on the variables’
state, so that one must consider the shock’s effects across possible states. That is, different
features of the nonlinear model such as level, slope, curvature must be evaluated over a range
of values. Therefore, in this setting, an econometrician must provide error guarantees that are
uniform over the variables’ domain. In this work, I combine the uniform inference framework
of Chen and Christensen (2015) with the structural nonlinear time series scheme discussed
above. The general idea is to resort to semi-nonparametric series estimation and work in a
physical dependence setup (Wu, 2005). On the one hand, I argue that physical dependence is a
natural way of imposing assumptions that lead to estimable models, being more transparent than
standard mixing conditions. On the other hand, the series approach makes it easy to estimate
models with linear and nonlinear components of the type considered in this paper. It also
provides well-developed theoretical results to study uncertainty. Under appropriate regularity
assumptions, I show that a two-step semi-nonparametric series estimation procedure is able
to consistently recover the structural model in a uniform sense. This result encompasses the
generated regressors’ problem, which arises in the second step due to the structural identification
strategy. Lastly, I prove that the nonlinear impulse response function estimates obtained are

themselves asymptotically consistent and, thanks to an iterative algorithm, straightforward to

!The negative-censoring map applied to variable a is a — max(a,0).



compute in practice.

To validate the proposed methodology, I provide simulation evidence. The first set of results
shows that, with realistic sample sizes, the efficiency costs of the semi-nonparametric procedure
are small compared to correctly-specified parametric estimates. A second set of simulations
demonstrates that whenever the nonlinear parametric model is mildly misspecified the large-
sample bias is large, while for semi-nonparametric estimates it is negligible. Finally, I study how
the IRFs computed with the new method compare with the ones from two previous empirical
exercises. In a small, quarterly model of the US macroeconomy, I find that the parametric non-
linear and nonlinear appear to underestimate by intensity the GDP responses by 13% and 16%,
respectively, after a large exogenous monetary policy shock. Moreover, sieve responses achieve
maximum impact a year before their linear counterparts. Then, I evaluate the effects of interest
rate uncertainty on US output, prices, and unemployment following Istrefi and Mouabbi (2018).
In this exercise, the impact on industrial production of a one-deviation increase in uncertainty
is approximately 54% stronger according to semi-nonparametric IRFs than the comparable lin-
ear specification. These findings suggest that structural impulse responses predicated on linear

specifications might be appreciably underestimating shock effects.

RELATED LITERATURE. Nonlinear models for dependent data have been extensively developed
with the aim of analyzing diverse types of series, see e.g. the monographs of Tong (1990), Fan
and Yao (2003), Gao (2007), Tsay and Chen (2018). Terdsvirta et al. (2010) provide a thorough
discussion of nonlinear economic time series modeling, but, by only presenting the generalized
IRF (GIRF) approach proposed by Koop et al. (1996), Potter (2000) and Gourieroux and Jasiak
(2005), they do not explicitly address structural analysis.

Parametric nonlinear specifications are common prescriptions, for example, in time-varying
models (Auerbach and Gorodnichenko, 2012, Caggiano et al., 2015) and state-depend models
(Ramey and Zubairy, 2018). They have been and are commonly used in time-homogeneous
models. Kilian and Vega (2011) provide a structural analysis of the effects of GDP on oil
price shocks and, in contrast to previous literature, find that asymmetries play a negligible role:
they do this by including a negative-censoring transformation of the structural variable and
testing for significance. Caggiano et al. (2017), Pellegrino (2021) and Caggiano et al. (2021) use
interacted VAR models to estimate effects of uncertainty and monetary policy shocks. From a
finance perspective, Forni et al. (2023a,b) study the economic effects of financial shocks. Their
generalized VMA specification, which is based on that of Debortoli et al. (2020), sets that
innovations be transformed with the quadratic map.? Gambetti et al. (2022) study news shocks
asymmetries by imposing that news changes enter their autoregressive model with a pre-specified
threshold function.

Extension of nonparametric methods to nonlinear time series have already been discussed in
the recent literature. For example, Kanazawa (2020) proposed to use radial basis function neural

networks to estimate a nonlinear time series model of the US macroeconomy. This work focuses

2T will discuss how their nonlinear model setup compares to the one I consider below.



on estimating the GIRF of Koop et al. (1996), with its structural limitations: productivity is
assumed to be a fully exogenous variable. Gourieroux and Lee (2023) provide a framework for
nonparametric kernel estimation and inference of IRFs via local projections. Yet, they primarily
work in the one-dimensional case and only mention economic identification in multivariate setups
from the perspective of linear VARs. The work possibly closest to the present paper seems to be
that of Lanne and Nyberg (2023), who develop a nearest-neighbor approach to impulse responses
estimation that builds on the local projection idea and the GIRF concept. These papers, save
for Gourieroux and Lee (2023), do not fully develop an asymptotic theory for their estimators,

which makes it hard to judge the econometric assumptions under which they are applicable.

OUTLINE. The remainder of this paper is organized as follows. Section 2 provides the general
framework for the structural model. Section 3 describes the two-step semi-nonparametric esti-
mation strategy, provides a thorough treatment of physical dependence assumptions and reports
the key uniform consistency guarantees. Section 4 is devoted to the discussion of nonlinear im-
pulse response function computation, validity and consistency. In Section 5, I report simulation
results that show the performance of the proposed method, while in Section 6 I discuss empirical
applications. Finally, Section 7 concludes. All proofs and additional technical results, as well as

secondary plots, can be found in Appendices B and C, respectively.

NOTATION. A (vector) random variable will be denoted in capital or Greek letters, e.g. Y;
or €, while its realization will be in lowercase Latin letters, that is y;. For a process {Y;}iez,
we write Vs = (Yy, Yir1,..., Yso1,Ys), as well as Yy = (..., Yi—2,Y;1,Y;) for the left-infinite
history and Y. = (Y%, Yit1, Yiso,...) for its right-infinite history. The same notation is also
used for random variable realizations. For a matrix A € R™? where d > 1, ||A| is the spectral
norm, ||A| s is the supremum norm and ||A||, for 0 < r < oo is the r-operator norm. For a

random vector or matrix, I will use |[- ||z to denote the associated L" norm.

2 Model Framework

In this section, I introduce the nonlinear time series model that will be considered throughout
the paper. This model setup will be a generalization of the one developed in Gongalves et al.
(2021) by letting the form of nonlinear components to remain unspecified until estimation. The
idea behind the partial structural identification scheme is simple: if Z; is the full vector of time
series of interest, one must choose one series, call it Xy, as the structural variable, and add
specific assumption on its dynamic effects on the remaining series, vector Y;. The central goal

will be the estimation of the impulse responses of Y; due to a shock in X;.

2.1 A Simple Nonlinear Monetary Policy Model

To begin with, it is useful to present a basic modeling setup with a straightforward economic
interpretation, which may also serve as a concrete empirical example for the setting I will develop.

To this end, I consider first a simple nonlinear monetary policy (MP) model which, however,



captures all of the key ingredients of the general framework discussed in the next subsection.

Consider the following hypothetical model of US macroeconomic time series:

Xe = pXi—1 + €1ty
FFR; = a1 FFRi_1 + a12X;-1 + Biew + e,
GDP; = a91GDP;_1 + aFFR;_1 + G(Xt) + ﬁgqt + €99¢,

where X} is a structural monetary policy variable (for example, a credibility exogenous sequence
of autocorrelated MP shocks), FFR; is the Federal Funds Rate and GDP; is the US Gross
Domestic Product. Moreover, €1, and €9 := (€214, €29;)" are reciprocally independent sequences
of shocks. Coefficients aj1, a2, a1 and agy induce a linear autoregressive structure for the
endogenous variables FFR; and GDP;, while 3§ and 33 determine the structural effects of e1; on
FFR and GDP. Moreover, notice that the (sufficiently smooth) nonlinear function G : R — R
implies that shocks €1; not only effect GDP contemporaneously in a linear fashion, but also
nonlinearly through the level of X;. To first aid conceptualization, one could think of setting
G to be a known transformation which can tease out a specific effect of interest. For example,
G(X;) = max(0, X;) to incorporate an asymmetry which depends on the sign of X;.® Yet, a
choice of G that is made a priori is hard to justify in general, and so the objective is rather to
estimate G jointly with all other parameters. This will be the core issue at hand in the remainder
of this paper.

To formally and effectively analyze this simple MP model and discuss its estimation, I

separate the linear, nonlinear and structural parts. In vector form,

Xt 1% 0 0 thl 0 1 0 0 €1¢
FFR; | = | a2 a11 0 FFR;_1 | + 0 + ,Bé 1 0 €21+
GDPt 0 a1 (99 GDPt,1 G(Xt) ﬁg 0 1 €929t

Now, by setting Y; := (FFRy, GDP,) and Z; := (X, FFRy, GDP;)' = (X;,Y}/)’, we obtain the
equation
Ly = A1Zt_1 + Gl(Xt) + Bo_let,

where A; is a matix function of (p, a1, a1z, @21, a92), Bal is a matrix function of (33, 82)
and G1(X;) = (0,0,G(X¢))". Throughout this paper, I will call the form in the above display
the semi-reduced form, for reasons that will be made clear when presenting the general model.
Finally, a key insight is that one can, with a mild abuse of notation, write G1 too in a “functional

matrix” form, that is

0 0
Gl(Xt) = 0 Xt = 0 Xt = GlXt.
G(Xy) G

Below, this will formalism will prove very useful in terms of streamlining notation.

3See also the wider class of threshold autoregressive models (TAR) discussed by Fan and Yao (2003) and
Terasvirta et al. (2010).



2.2 General Model

Let Z; := (X;,Y/) where X;e X CRand Y; € Y € R%, and let d = 1 + dy be the dimension

of Z;. I assume that the structural nonlinear data generating process has the form
BoZ, =b+ B(L)Zi—1 + F(L)X; + €, (1)

where b = (b1, b)) € R? and ¢, = (e1,¢5) € € € RY are partitioned accordingly. Moreover,
I assume that model (1) imposes a linear dependence of observables on Y; and its lags, while
series X; can enter monlinearly. That is, B(L) = By + BaL + ... + B,LP~! and F(L) =
Fo+ FiL + ...+ F,LP are linear and functional lag polynomials, respectively.”

Matrices (Fy,. .., Fp) are functional in the sense that their entries consist of real univariate
functions, and the product between F(L) and X; is to be interpreted as functional evaluation,

c.f. the example discussed above. That is,

Jo1(Xy) f1,1(Xe-1) Jp1(Xe—p)
F(L)X; = : + : +..+ 3 ;

Jo.a(Xt) fr.a(Xe-1) Jp.d(Xt—p)

where {fj;} € Afor j=0,...,p,l =1,...,d, and A is a sufficiently regular function class.” The
modeling choice to remain within the autoregressive time series class with additive lag struc-
ture has two core advantages. First, it yields a straightforward generalization to classical linear
models (Liitkepohl, 2005, Kilian and Liitkepohl, 2017). Second, it keeps semi-nonparametric es-
timation of nonlinear components feasible. Additivity in variables and lags means that the curse
of dimensionality involved with multivariate nonparametric estimation is effectively mitigated
(Fan and Yao, 2003).
Let the lag polynomials be given by

[BH(L) BIQ(L)]
Boi1(L) Bao(L)|’

0

BlL) = Fy (L)

F(L) =

This structural formulation means that the model equation for X; is restricted to be linear in
all regressors. It also implies that X; does not depend contemporaneously on itself. Note that
as long as Bia(L) # 0, X; still depends upon nonlinear functions of its own lags, which enter
via lags of Y;. Next, I impose that By € R% ¥ hag the form

1 0

By =
—Bo,12 Boo22

i

4This is a minor abuse of notation compared to e.g. Liitkepohl (2005). The choice to use a matrix notation is
due to the ease and clarity of writing a (multivariate) additive nonlinear model such as (1) in a manner consistent
with standard linear VAR models. In cases where a real matrix A € R¥? is multiplied with a conformable
functional matrix F', I simply assume the natural product of a scalar times a function, e.g. A;jFi¢, where Fiy is
a function, returning a new real function.

5To fix ideas, one may think of AY(M), the Holder function class of smoothness ¢ > 0 and domain M < R.
We shall make more precise assumptions regarding A in Section 3 when discussing model estimation.



where By 22 is non-singular and normalized to have unit diagonal. The structural model is thus

given by

X¢ =b1 + Bi2(L)Yi—1 + Bii(L) Xy—1 + e,
Bo22Y; = by + Boa(L)Yi—1 + Boi1 (L) X—1 + Bo12Xt + Fo1 (L) Xy + €.

Moreover, it follows that By ! exists and has form

1 0
B2 B

Byl =

The constraints on By yield a structural identification assumption and require that X; be

pre-determined with respect to Y; (Gongalves et al., 2021). By introducing
p:=By'b, A(L):=B;'B(L) and G(L):= By'F(L),

one thus obtains

Xi =1+ A1a(L)Yso1 + A (L) Xe—1 + €1ty

(2)
Y; = po + Ao (L)Y 1 + Ao (L) X1 + Go1(L) Xy + Biley + Bi*ear,

or, equivalently,
Zy =i+ A(L)Y;:_l + G(L)Xt + Uy, (3)

where uy = [us, uge|’, u1e = €14 and ugy := Bglelt + 3826215. Given the structure of BO_I, one can
see that A19(L) = B12(L), A11(L) = B11(L) and G11(L) = 0. Importantly, one must also notice
that Ajo(L) and Ga1(L) = B2 Fy (L) might now be not properly identified without further
assumptions. Since Ag;(L) is not necessarily zero, linear effects of lags of X; on Y; can enter
by means of both lag polynomials. To resolve this issue, I therefore assume that the functional

polynomial Go;(L) contains, at lags greater than zero, only nonlinear components.’

Example 2.1. (Bivariate Model with Exogenous Shocks). To give a concrete example of (2),
assume that one wants to model the effects of monetary policy shocks on U.S. GDP growth
following Romer and Romer (2004). Then, let

Xt = e,

Y = po + AV 1 + G(X;) + Biteys + ear,

where X, are the policy shocks, which are assumed to be i.i.d., while Y; is a macroeconomic
variable whose responses the researcher is interested in, e.g. GDP growth or PCE inflation.
This setup is very minimal, and I assume here, for the sake of simplicity, that endogeneity of
€9; does not pose a problem. Then, the term G(X;) + B3leys = G(ery) + Biley, =: H(ey,) fully

SWhen using a semi-nonparametric estimation strategy with B-splines, this will be feasible to implement
numerically. When using wavelets, this also is a natural approach. In practice, however, some care must be taken
to avoid constructing collinear regression matrices.



captures any contemporaneous effect of monetary policy shocks on Y;. When G(e1) = 0, H(€qy)
and the model are linear. If G(e¢) = fomax(0,e€;) for some Sy # 0, function H is piece-wise
linear: contractionary and expansionary shocks have, in general, different effects on Y;, but
shocks with the same sign have proportional impact. As a final example, if G(e1;) = o €5, then
H(eqy) is a third-degree polynomial, so that both sign and size of monetary policy shocks are
fundamental determinants of Y;’s impulse response function. In principle, to correctly quantify
the repercussions of a specific monetary intervention a researcher must model all of these effects,
unless they have a strong prior belief that either or both can be safely ignored. More complex
nonlinear and asymmetric relations are also possible. A more robust strategy - as proposed in
the present work - is to avoid choosing G (or H) as part of the model’s specification, but rather

to empirically estimate it jointly with all other coefficients.

Remark 2.1. (Constrained Models). The general approach of leaving F'(L) unconstrained is
appealing when no precise economic intuition or information is available. However, there might
be cases where the functional form of the nonlinear component is either partially known, or can

be restricted. A simple restriction is that of a uniform functional over lags,
F(L)=F+FL+FL*+...+ FIP.

This is a constraint effectively imposed by e.g. Gongalves et al. (2021), Kilian and Vega (2011)
and other references. They do this by fully specifying F', but nonparametric constraints may be

desired, e.g. monotonicity. Constrained estimation of F(L) is addressed in Remark 3.2 below.

The system of equations in (2) provides the so-called pseudo-reduced form model. By design,
one does not need to identify the model fully, meaning that fewer assumptions on Z; and ¢; are
needed to estimate the structural effects of €1; on Y;. This comes at the cost of not being able
to simultaneously study structural effects with respect to eo;. An associated problem is that,
in general, Go1(L)X; is correlated with innovation ug; through B2'e;;. The main challenge to
structural shock identification of €; thus lies in the fact that if B3! & 0 and Ga1(0) # 0, there
is endogeneity in the equations for Y; since X; depends linearly on €1;. Gongalves et al. (2021)
address the issue by proposing a two-step estimation procedure wherein one explicitly controls
for €14 by using regression residuals €;. In Section 3 below, I show that this approach also allows

for consistent semi-nonparametric estimation of structural impulse responses.

Remark 2.2. (Identification Schemes). Forni et al. (2023a,b) provide an alternative nonlinear
structural identification framework to that of Gongalves et al. (2021). Their approach was
originally introduced in Debortoli et al. (2020) and is based on the VMA form of the time series.

Using the current notation, suppose that the structural representation of Z; is given by
Zt =b + Q(L)F(Elt) + B(L)Gt

where ¢; are independent structural shocks with zero mean and identity covariance, while €y,
identifies, e.g., financial innovations and shocks. Q(L) and B(L) are both linear lag polynomials

and F' is a nonlinear function to be specified by the researcher. Imposing some additional



assumptions, the reduced-form assumed by Forni et al. (2023a) is
Zy = p+ A(L)Zt + QoF (1) + Boet, (4)

where F(x) = x? in their baseline specification. Forni et al. (2023b) use an analogous model,
while Debortoli et al. (2020) also consider more general setups where Q) is replaced by a general
lag polynomial D(L). These kinds of structural assumptions are similar but not identical to
the ones imposed in Gongalves et al. (2021) and this paper. For (4) to overlap with (2), one
must assume that X; is exogenous and independently distributed, so that its level does not
affect the mapping of €;; through F. That is, (4) requires that only the shocks have nonlinear
effects, not the structural variable itself. The upside of this approach is that one can directly
and explicitly model asymmetry in the innovation process. The drawbacks are that, without a
clear identification of a structural variable, one must fully identify By. Moreover, function F
remains to be specified a priori. Note, however, that if innovation sequence €1+ is observable, a
generalization of the semi-nonparametric estimation results of this paper to the framework of
Debortoli et al. (2020) would be straightforward.

I now state some preliminary assumptions for the model.

Assumption 1. {€1;}wez and {€2}tez are mutually independent time series such that

€1e| iid [ |9 i 0
€21 10 %
where Y5 is a diagonal positive definite matrix.
Assumption 2. {7}y is strictly stationary, ergodic and such that sup, E[|Z;|] < oo.

Assumption 3. The roots of equation det(I;— A(L)L) = 0 are outside the complex unit circle.

Assumption 1 follows Gongalves et al. (2021). Assumption 2 is a high-level assumption
on the properties of process {Z;};z and is common in the analysis of structural time series.
Assumption 3 ensures that it is possible to invert lag polynomial (I — A(L)L) in order to define
impulse responses, as done below. However, Assumption 2 and 3 will not be sufficient to make
sure that (2) is estimable from data, and in Section 3 additional constraints on A(L) and G(L)
will be required in order to apply semi-nonparametric estimation. Moreover, Assumption 2 is
not easily interpretable: functional lag polynomial G(L) makes it impossible to reduce semi-
structural equations (2) to an explicit infinite moving average form.

I will resolve both the former (sufficiency) and latter (interpretability) issue by using the
nonlinear dynamic model framework outlined by Potscher and Prucha (1997). It will allow
introducing regularity assumptions on the dependence of Z; which enable the derivation of

consistency of impulse response estimates.

10



2.3 Structural Nonlinear Impulse Responses

Starting from pseudo-reduced equations (2), by letting W(L) = (I; — A(L)L)~! one can further
derive that
Zy =0+ 0(L)e + T(L)Xs, (5)
where
0
Ga1(L)

fi=W(1) [’“] , O(L):=W(L)By!, and T(L):= U(L)
12

To formally define impulse responses, it is useful to partition the polynomial ©(L) according to

o) =[0.() 0aD)],

where ©.1(L) represents the first column of matrices in ©(L), and ©.2(L) the remaining dy
columns.

Given impulse 6 € R at time ¢, define the shocked innovation process as €15(d) = €5 for
s % t and €1,(d) = € + 0, as well as the shocked structural variable as X(d) = X; for s <t and
Xs(0) = Xs(Zy—1,€t + 0, €141 ..., €5) for s = t. Further, let

Zt+h =n-+ 6-1(L)€1t+h + @-2(L)62t+h + F(L)Xt,
Zi1n(0) =1+ ©.4(L)e1r+n(0) + O2(L)eatn + (L) Xe(6),
be the time-t baseline and shocked series, respectively. The unconditional impulse response is

given by
IRF,(6) = E[Zi4n(0) — Zisn] - (6)

The difference between shock and baseline is clearly

Zeon(8) = Zisn = On1d + T(L)X(8) — T(L) X,
= 05,10 + (LoXi4n(0) = ToXepn) + ... + (Tn X (0) — T Xy)

therefore the unconditional IRF reduces to
IRF,(6) = Op,16 + E[To X1 4(0) = ToXpgn] + ... + B[R X (6) — TpXy]. (7)

Notice that, in (7), while one can linearly separate expectations in the impulse response
formula, terms E [I'; X¢;(0) — I'jX;4;] for 0 < j < h cannot be meaningfully simplified. Coef-
ficients I'; are functional, therefore it is not possible to collect them across Xy;(0) and Xy ;.
Moreover, these expectations involve nonlinear functions of lags of X; and cannot be computed
explicitly. To address this issue, Section 4 provides an iterative procedure that makes computa-

tion of nonlinear impulse responses in (7) straightforward.

Remark 2.3. (Local Projection Approaches). As mentioned in the introduction, in recent years
there has been growing interest in nonlinear IRF estimation procedures, and, accordingly, ways to

generalize the LP framework. Jorda (2005) already suggested that nonlinear impulse responses
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can, in principle, be directly estimated with local projections via the so-called flexible local
projection approach. The flexible LP method relies on the Volterra expansion of time series to
account for nonlinearities. There are multiple issues with this method. First, Jorda (2005) does
not directly state how the validity of Volterra series implies the autoregressive form used in the
LP regression. Second, the flexible LP proposal is fundamentally equivalent to adding polynomial
factors to the linear regression specification. Thus, it is effectively a semi-nonparametric method,
yet Jorda (2005) does not provide a theoretical analysis from this viewpoint. Moreover, no
criterion or empirical rule-of-thumb for selecting the truncation order of the Volterra expansion
are suggested, which becomes a key issue in practice. Due to these concerns, application of
flexible LPs seems hard to justify from an econometric perspective.” Lanne and Nyberg (2023)
propose to nonparametrically recover the conditional mean function with a nearest-neighbor
(k-NN) regression estimator. Their method is very flexible, but requires appropriately choosing
the neighborhood size k and a distance measure for histories of realizations, and the authors do
not theoretically address these issues. Very recently, Gourieroux and Lee (2023) have considered
nonlinear IRF estimation with kernel-based methods by means of a novel conditional quantile
representation of the process. They prove kernel LP estimators based on such representation
are consistent, and that the direct estimator is asymptotically normal. The theory is developed
only for the univariate case, with an autoregressive structure of lag order one, limiting the

applicability of their procedure.

3 Estimation

Pseudo-reduced form model (2) can be compactly rewritten as

Xy =Wy + e,
Y; = T5Woyr + uat,

where
I -_( A oA Al ! )'eRde
1:= \"M, 1,11, ) p,11; 1,129 y “lp 12 3
217/
=2 Gio1 -+ Gpa1 Aige -+ Ay Bj',
. U o\ d
thlttfp = (thla sy thpa th—la cee }/;f—p) e RP )
/ / 1+pd
Wlt = (1’ Zt—l:t—p) e R™P )
. / / 3+pd
Wor = (1, X4, Z{_14_p, €11) € R7TP

Additionally, let Wq = (W1, ..., Wi,) and Wy = (Way, ..., Wa,)’ be the design matrices for X;

and Y}, respectively.

"Moreover, the complexity of estimating Volterra kernels grows exponentially with the kernel order, and thus
more sophisticated approaches have been proposed to make estimation feasible, see e.g. Sirotko-Sibirskaya et al.
(2020) and Movahedifar and Dickhaus (2023).
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Two-step Estimation Procedure. Since Wy, is an infeasible vector of regressors, to estimate
IT5 one can use Wgt = (1, Xy, Zé_lzt_p, €1¢)’, which now contains generated regressors in the form
of residual €1;. This approach is an adaptation of the two-step procedure put forth by Gongalves

et al. (2021), where I allow for semi-nonparametric estimation:
1. Regress X; onto W7y, to get estimate ﬁl and compute residuals €; = X; — ﬁ’lwlt.

2. Fit Y; using I//[\/gt to get estimate ﬁg. Since G121, ..., Gp21 contain functional parameters,

a semi-nonparametric estimation method is required.
3. Compute coefficients in ©(L) and T'(L) from II; and II,.

4. Consider the two paths with time ¢ shocks €; + & versus €: to construct the unconditional
IRF, average over histories as well as future shocks by using the algorithm detailed in

Proposition 4.1 or Proposition 4.2.

Gongalves et al. (2021) only allow for pre-determined nonlinear transforms of X;. The core
contribution of this paper is allowing G121,...,Gp21 to be estimated in a nonparametric way.
I focus on series estimation in order to build on the extensive theory available in the setting of
dependent data (Chen, 2013, Chen and Christensen, 2015). This further adds to the framework
of Gongalves et al. (2021), as their regularity assumptions are stated only as preconditions for

a uniform LLN to hold and are not easy to interpret.

Remark 3.1. (Alternative Estimation Approaches). One does not need to limit estimation of
the nonlinear functional parameters G121, ..., Gp 21 to series-type estimators. The literature on
nonparametric regression is mature, and thus kernel (Tsybakov, 2009), nearest-neighbor (Li and
Racine, 2009), partitioning (Cattaneo et al., 2020) and deep neural network (Farrell et al., 2021)
estimators are all potentially valid alternatives. For example, Huang et al. (2014) use kernel
regression to perform density estimation and regression under physical dependence. However,
thanks to both availability of uniform inference results (see also Belloni et al. 2015) and ease
of implementation, series methods stand out as a choice for semi-nonparametric time series

estimation and nonlinear impulse response computation.

In the reminder of this section, I first introduce the semi-nonparametric series estimation
strategy in detail. Then, I outline the core assumptions of the sieve setup. Special focus is
put on the dependence structure of the data: rather than directly assuming S-mixing as in
Chen and Christensen (2015), I shall consider physical dependence assumptions (Wu, 2005).
to provide transparent conditions on the model itself that, if satisfied, ensure consistency. I
prove that the proposed two-step semi-nonparametric procedure is uniformly consistent under
physical dependence assumptions. These assumptions can be imposed directly on the model,
and, as such, may be empirically checked, if necessary. The uniform asymptotic guarantees
are first stated for the infeasible estimator involving true innovations €j; and later extended to

encompass feasible estimator Ils.
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3.1 Semi-nonparametric Series Estimation

Starting from (8), one can introduce the ith-row coefficient matrices

G = [Gro1 - Gpo1l;
AP =[A10 -+ Apal,,

and Bg} accordingly. Consider now the regression problem for each individual component of Y,
Yie = GP Xy p + APY, 14 p + Biler + uait,

where Xy := (X¢,...,X4—p) and i = 1,...,dy. For simplicity of notation, I suppress inter-
cept 12;, but this is without loss of generality. Since G?! consists of 1 + p functional coefficients

and A?Q can be segmented into p row vectors of length dy, it is possible to rewrite the above as
P P
Yi = Y g5} (Xug) + >, AT Yy + Bilew + ugir. 9)
§=0 j=1

I will use 72, := [G?' A?2 B2l]’ to identify the vector of coefficients in the equation for the ith

component of ¥;. From (9), IT; can be decomposed in dy rows of coefficients, i.e.

Y1y m21
= : Wat + ugy

Ydyt 7T2,dy

and one can treat each equation separately.

A semi-nonparametric series estimator for (9) is built on the idea that, if functions gizj1
belong to an appropriate functional space, one can construct a growing collection of sets of basis
functions — called a sieve — which, linearly combined, progressively approximate ggjl. That is,
one can reduce the infinite dimensional problem of estimating the functional coefficients in m ;
to a linear regression problem. Although (9) features a sum of possibly nonlinear functions in
{Xi—j}i_o, as well as linear functions of {¥;—;}7_; and ey, constructing a sieve is straightfor-
ward.®

Assume that glzjl € A, where A is a sufficiently regular function class to be specified in the
following, and let B, be a sieve for A. Let bix,...,bss be the collection of kK > 1 sieve basis

functions from B, and define

V() := (b1e(x), ..., bex(z)),
By i= (0" (X11—p)s -+ 0" (Xnin—p))' -

. . 1 . . . .
The sieve space for m; is B A+p x R1*Pdy  where here R identifies the space of linear functions.

Since the nonparametric components of IIy are linearly separable in the lag dimension, I take

8See Chen (2007) for a comprehensive exposition of sieve estimation. Chen and Shen (1998) and Chen (2013)
also provide additional examples of partially linear semi-nonparametric models under dependence.
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B}\er to be a direct product of sieve spaces.” Importantly, the same sieve can be used for all

components of Y;, as I assume the specification of the model does not change across i.
Let brik,...,bxr kK be the sieve basis in B};rp x Ritpdy which, for k > 1 and K =

pk + (1 + pdy), is given by

brix (War) = b1(Xy),

bﬂ,(pn)K(WQt) = bHK(Xt—p)v
bﬂ',(pli+1)K(W2t) = Y;f—l,la

br,(k—1)k (Wat) = Yipay,

br kix (War) = €ng,

where & fixes the size of the nonparametric component of the sieve. Note that K, the overall size
of the sieve, grows linearly in x, which itself controls the effective dimension of the nonparametric
component of the sieve, by 14, ..., br xx. In all theoretical results, I will focus on the growth rate
of K rather than x, as asymptotically they differ at most by a constant multiplicative factor.

The regression equation for my ; is
/
Y; = 7T2’Z-W2 + u9;,

where Y; = (Yi1,...,Yi) and ug; = (ug1, ..., u2,)". The estimation target is the conditional

expectation 7 ;(w) = E[Yi | W2 = w] under the assumption E[ug;: | Wo] = 0. By introducing
by (w) := (br i (W), ., br i (W)
By = (b5 (War), ..., b5 (Wan))',
the infeasible least squares series estimator ?rii(w) is given by
m34(w) = bFf (w)'(ByBx) ' Bk Yi.
Similarly, consider the feasible series regression matrices
bf(w) = (brax(w),..., meK(w))' ,

Brim (W (W), K (W) )

9Tt is not necessary to consider the more general case of tensor products of 1D sieve functions, as it would
be the case for a general (1 + dy)-dimensional function G3'(X¢, X¢—1,..., Xs—p). As previously discussed, the
additive structure avoids the curse of dimensionality which in nonlinear time series modeling if often a primary
concern when working with moderate sample sizes (Fan and Yao, 2003).
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Thus, the feasible least squares series estimator is
~ _ 1K 1D B \—1n/
7T2’7;(1,U) - b7r (w) (BWBW) BKYVZ

Given that the semi-nonparametric estimation problem is the same across ¢, to further
streamline notation, where it does not lead to confusion I will let my be a generic coeflicient

vector belonging to {ma;}L_,, as well as define T2, Y and uy accordingly.

Remark 3.2. (Constrained Sieve Estimation). The idea of constrained estimation was only
briefly touched upon in Remark 2.1. In fully parametric nonlinear models, constraints are often
imposed out of necessity or simplicity. If, say, G 21 is constituted only of the negative-censoring
map, it is unclear why G221 would be constituted instead of quadratic or cubic functions, for
example. That is, specific parametric assumptions can be either unreasonable or hard to justify
in practice.!’ Yet, constrained semi-nonparametric estimation might be desirable at times.

If the shape of the regression function is to be constrained to ensure e.g. non-negativity,
monotonicity or convexity, Chen (2007) gives examples of shape-preserving sieves, like cardinal
B-spline wavelets. Constraints on a generic sieve can also be imposed at estimation time. For
example, for simplicity suppose dy = 1 and p = 2, and that one wants to impose G121 = G221.

The constrained sieve estimator then solves

n
mﬁin Z (V; — ,[5"()7[5(‘/[/21&))2 subject to [, fI,{,O,QX(deY)]B = 0.
t=p+1
Analysis of restricted or constrained estimators, however, is still a challenging problem in non-
parametric theory, c.f. Horowitz and Lee (2017), Freyberger and Reeves (2018), Chetverikov
et al. (2018). Misspecification in particular is complex to address. Accordingly, I will not be
imposing any specific restrictions on the nonlinear functions in Il outside the ones necessary to

derive uniform asymptotic theory.

Spline Sieve. The B-spline sieve BSpl(k, [0,1]9,7) of degree r = 1 over [0,1]% can be con-
structed using the Cox-de Boor recursion formula. Alternatively, an equivalent way of construct-
ing the spline sieve is as follows. For simplicity, let dy =1l andlet 0 <mj < ... <my_p_1 <1
be a set of knots. Then

!/

Sone(2) == (1,2, 22, .. 2", max(z —my,0)", ... max(z — Me_r_1, 0)")" .

spline
The resulting spline sieve is piece-wise polynomial of degree r. Moreover, notice that in practice
the spline sieve already contains a linear and constant term, so care must be taken to avoid
collinearity (for example, by not including an additional intercept and linear term in X in the

series regression).

0For more precise examples and a more in-depth discussion, see Section 2.1 of Chen (2013).
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3.2 Distributional and Sieve Assumptions

To develop the asymptotic uniform consistency theory, I rely on the general theoretical frame-
work established by Chen and Christensen (2015). Basic distributional and sieve assumptions

can be carried over from their setup mostly unchanged.

Assumption 4. (i) {€}wcz are such that ¢ id. (0,%), (ii) {e1t}tez and {eat}ez are mutually

independent, (iii) ¢ € & for all t € Z where £ < R is compact, convex and has nonempty

interior.

Assumption 5. (i) {Z;}iez is a strictly stationary and ergodic time series, (ii) X; € X for all
t € Z where X < R is compact, convex and has nonempty interior, (iii) Y; € Y for all ¢t € Z where

Y < R% is compact, convex and has nonempty interior.

Assumptions 4(i)-(ii) are a repetition of Assumption 1. As Wy depends only on Xy—p,
Yi—1:4—p, and €14, Assumption 1 also implies that entries of us; are independent of Wy, so that
Efugi | War] = 0.1 Assumption 5(i) also follows from Assumption 2. However, thanks to the
results derived in Section 3.3, below I will impose more primitive conditions on the model for Z,
that allow to recover 5(i). Assumption 4(iii) and Assumptions 5(ii)-(iii) imply that Xy, Y3, as well
as € are bounded random variables. In (semi-)nonparametric estimation, imposing that X; be
bounded almost surely is a standard assumption. Since lags of Y; and innovations €; contribute
linearly to all components of Z, it follows that they too must be bounded. Unbounded regressors
are more complex to handle when working in the nonparametric setting. Generalization from
bounded to unbounded domains under dependence has already been discussed by e.g. Fan and
Yao (2003). Chen and Christensen (2015) also allow for an expanding support by using weighted
sieves. I leave this extension for future work.

It is, however, important to highlight that bounded support assumptions are relatively
uncommon in time series econometrics. This is clear when considering the extensive litera-
ture available on linear models such as, e.g., state-space, VARIMA and dynamic factor mod-
els (Hamilton, 1994a, Liitkepohl, 2005, Kilian and Liitkepohl, 2017, Stock and Watson, 2016).
Avoiding Assumptions 4(iii) and 5(iii) can possibly be achieved with a change in the model’s
equations — so that, for example, lags of Y; only effect X; either via bounded functions or not
at all — so I do not discuss this approach here. In practice, Assumptions 4(ii) and 5(ii)-(iii)
are not excessively restrictive, as most credibly stationary economic series often have reasonable
implicit (e.g. inflation) or explicit bounds (e.g. employment rate).'?

Let Ft = o(...,€14—1,u2—1, Yi—1, €11, U2, Yz) be the natural filtration defined up to time ¢.

Thanks to Assumptions 4 and 5 the following moment requirements hold trivially.

11Moreover7 for any given i, the sequence {u2it}tez is i.i.d. over time index ¢.

12This is not true, of course, when modeling extreme events like natural disasters, wars or financial crises. To
study these types of series, however, researchers often apply specialized models. Thinking in this direction, a
future development could be to extend the framework presented here to allow for innovations with unbounded
support.
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Assumption 6. (i) E[u3,|F;_1] is uniformly bounded for all t € Z almost surely, (i) E[|ug:|?*°] <
o for some & > 0, (iii) B[[Y;|>*°] is uniformly bounded for all ¢ € Z almost surely, and (iv)
E[Y?|F;—1] < oo for any § > 0.

Now let Wy < R be the domain of Ws,. By assumption, W, is compact and convex and is
given by the direct product
Wy = XMP x YP x &,

where &1 is the domain of structural innovations €1 i.e. £ = & x &s.

Assumption 7. Define (x, 1= supweWQHbf(w)H and
Ak = Pnin (B[ 07 (Wae )byt (War) 1)1 72,

It holds:
(i) There exist wy,ws = 0 s.t. sup, e, [|VOE (w)|| < @1 K*2.

(ii) There exist wy = 0, Wy > 0 s.t. (rp < N¥1K92,

(iii) Amin (B[ b5 (Wa)bE (Wo)']) > 0 for all K and n.

Assumption 7 provides mild regularity conditions on the families of sieves that can be
used for the series estimator. More generally, letting W, be compact and rectangular makes
Assumption 7 hold for commonly used basis functions (Chen and Christensen, 2015).1% In
particular, Assumption 7(i) holds with w; = 0 since the domain is fixed over the sample size.

In the proofs, it is useful to consider the orthonormalized sieve basis. Let

™

~ —1/2
b (w) 1= B [0 (War)bX (War)' ] b (w),
~ ~ ~ /
Bri= (BE(War), .. B (W)
be the orthonormalized vector of basis functions and the orthonormalized regression matrix,
respectively.
Assumption 8. It holds that ||(B.B,/n) — Ix|| = op(1).

Assumption 8 is the key assumption imposed by Chen and Christensen (2015) to derive
uniform converges rates under dependence. They prove that if {Wo}ez is strictly stationary
and S-mixing — with either geometric or algebraic decay, depending on the sieve family of interest
— then Assumption 8 holds. Let (€2, Q,P) be the underlying probability space and define

B(A,B) := % sup >, |P(A; 0 B;) — P(A;)P(B))]
(3,5)elxJ

where A, B are two o-algebras, {A;}icr © A, {Bj}je; © B and the supremum is taken over all

finite partitions of 2. The h-th S-mixing coefficient of process {Wa}iez is defined as

p(h) = Slipﬂ (o( s, Wa—1, War),, 0 (Warsn, Wargnt,--2)) ,

13See Chen (2007), Belloni et al. (2015) for additional discussion and examples of sieve families.
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and Wy, is said to be geometric or exponential B-mizing if B(h) < 1 exp(—~2h) for some v, > 0
and 9 > 0. The main issue with mixing assumptions is that they are, in general, hard to
compute and evaluate. Therefore, especially in nonlinear systems, assuming that S(h) decays
exponentially over h imposes very high-level assumptions on the model. There are, however,
many setups in which it is known that S-mixing holds under primitive assumptions (see Chen
(2013) for examples).

In the next subsection, I will argue that using a different concept of dependence - one rooted
in a physical understanding of the underlying stochastic process - leads to imposing transparent

assumptions on the model’s structure.

3.3 Physical Dependence Conditions

Consider now a non-structural model of the form
Zt = G(thl, Et). (10)

This is a generalization of semi-reduced model (3) where linear and nonlinear components are
absorbed into one functional term and By is the identity matrix.'* Indeed, note that models
of the form Z; = G(Z;—1,...,Zi—p, &) can be rewritten as (10) using a companion formulation.
If ¢ is stochastic, (10) defines a causal nonlinear stochastic process. More generally, it defines
a nonlinear difference equation and an associated dynamical system driven by ¢;. Throughout
this subsection, I shall assume that Z; € Z € R as well as ¢ € £ < R,

Relying on the framework of Potscher and Prucha (1997), I now introduce explicit conditions
that allow to control dependence in nonlinear models by using the toolbox of physical dependence
measures developed by Wu (2005, 2011). The aim is to use a dynamical system perspective to
address the question of imposing meaningful assumptions on nonlinear dynamic models. This
makes it possible to give more primitive conditions under which one can actually estimate (8)

in a semi-nonparametric way.

Stability. An important concept for dynamical system theory is that of stability. Stability
turns out to play a key role in constructing valid asymptotic theory, as it is well understood
in linear models. It is also fundamental in developing the approximation theory of nonlinear

stochastic systems.
Example 3.1. (Linear System). As a motivating example, first consider the linear system
Zt = BZt_l + €¢

where we may assume that {e;};cz, ¢ € R, is a sequence of i.i.d. innovations.'” It is well-

known that this system is stable if and only if the largest eigenvalue of B is strictly less than

1n this specific subsection, shock identification does not play a role and, as such, one can safely ignore By.
5One could alternatively think of the case of a deterministic input, setting e; ~ P;(a:) where P;(a:) is a Dirac
density on the deterministic sequence {at}tEZ.
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one in absolute value (Liitkepohl, 2005). For a higher order linear system, Z; = B(L)Z;—1 + €
where B(L) = By + BoL + ... + B,LP~!, stability holds if and only if |Amax(B)| < 1 where

B1 32 Bp
I,, 0 - 0
B := 0 IdZ 0
| 0 Iy, 0

is the companion matrix.

Extending the notion of stability from linear to nonlinear systems requires some care. Potscher
and Prucha (1997) derived generic conditions allowing to formally extend stability to nonlinear

models by first analyzing contractive systems.

Definition 3.1 (Contractive System). Let Z; € Z € R%, ¢ € £ < R, where {Z;}iez is
generated according to
Zt = G(thl,et).

The system is contractive if for all (z,2') € Z x Z and (e,e') e E x &
IG(z,€) = G, €] < Czllz = || + Celle = €|
holds with Lipschitz constants 0 < Cyz <1 and 0 < C, < o0.

Sufficient conditions to establish contractivity are

sup {

stackfjl [é’Z(Z ,€e )}

fezae5}<1 (11)
and

H&G < 0, (12)
Oe

where the stacking operator stack?jl[-]i progressively stacks the rows, indexed by i, of its
argument (which can be changing with i) into a matrix. Values (z,e') € Z x £ change with
index ¢ as the above condition is derived using the mean value theorem, therefore it is necessary
to consider a different set of values for each component of Z;.

It is easy to see, as Potscher and Prucha (1997) point out, that contractivity is often a
too strong condition to be imposed. Indeed, even in the simple case of a scalar AR(2) model
Zy =b1Zi 1+ baZy_o + €, regardless of the values of by, by € R contractivity is violated. This is
due to the fact that in a linear AR(2) model studying contractivity reduces to checking |B| <1
instead of [Amax(B)| < 1, and the former is a stronger condition than the latter.' One can

weaken contractivity — which must hold for G as a map from Z;_; to Z; — to the idea of eventual

16See Potscher and Prucha (1997), pp.68-69.
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contractivity. That is, intuitively, one can impose conditions on the dependence of Z;,; on Z;
for h > 1 sufficiently large. To do this formally, I first introduce the definition of system map

iterates.

Definition 3.2 (System Map Iterates). Let Z; € Z2 < R, ¢ € £ € R where {Z;}ez is

generated from a sequence {€;}icz, according to
Zt = G(thl,ﬁt).
The h-order system map iterate is defined to be

G(h) (Zt7 €t+1, €425+ 6t+h) = G(G( o G(Zta 6t+1) e 76t+h71)7 €t+h)
=G €t4n) 0 G(+ €04n-1) © -+ 0 G(Zt, €t41),
where o signifies function composition and G(O)(Zt) = Z;.

To shorten notation, in place of G (Z, €41, €149, ..., €r4p) I shall use GM(Zy, e 1.04)-
Additionally, for 1 < j < h, the partial derivative

oG (h*)
0€;

for some fixed h* is to be intended with respect to €;1;, the j-th entry of the input sequence.
This derivative does not dependent on the time index since by assumption G is time-invariant
and so is G,

Taking again the linear autoregressive model as an example,

h—1
Zion = G (Zy eriran) = BIZi+ ), Bierin
i=0
since G(z,¢€) = Biz + e. If By determines a stable system, then || B|| — 0 as h — oo since G"
converges to zero, and therefore ||BY|| < Cy < 1 for h sufficiently large. It is thus possible to

use system map iterates to define stability for higher-order nonlinear systems.

Definition 3.3 (Stable System). Let Z; € Z < R, ¢; € £ € R, where {Z;}iez is generated
according to the system
Zt = G(Zt_l,ét).

The system is stable if there exists h* = 1 such that for all (z,2') € Z x Z and (e1,ea,...epx*,
el eh, ... es) € XZQZ? &

*

IG") (2, e1n%) = GW (2 € )| < Czllz = 2| + Cellerns — €fpe |
holds with Lipschitz constants 0 < Cz <1 and 0 < C, < o0.

It is important to remember that this definition encompasses systems with an arbitrary finite
autoregressive structure, i.e., Zy = G(Zi—p41,...,Zi—1,€) for p > 1, thanks to the companion

formulation of the process. An explicit stability condition, similar to that discussed above for
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contractivity, can be derived by means of the mean value theorem. Indeed, for a system to be

stable it is sufficient that, at iterate h*,

oqth™) . 4 h*
sup stauck?zz1 aT(z’,e?l:h*) e Zel e XEF <1 (13)
i =1
and
oG ¢
sup H T(z,elzh*) ‘ z€Zeppx € X Ep <0, j=1,...,h" (14)
€ i=1

Potscher and Prucha (1997) have used conditions (11)-(12) and (13)-(14) as basis for uniform
laws of large numbers and central limit theorems for L"-approximable and near epoch dependent

processes.

Physical Dependence. Wu (2005) first proposed alternatives to mixing concepts by propos-
ing dependence measures rooted in a dynamical system view of a stochastic process. Much work
has been done to use such measures to derive approximation results and estimator properties,
see for example Wu et al. (2010), Wu (2011), Chen et al. (2016), and references within.

Definition 3.4. If for allt € Z, Z; has finite rth moment, where r = 1, the functional physical

dependence measure A, is defined as

Ayp(h) = Slip H Zirh — G(h)(Zéa €t41:t+h) ‘

LT

where || - || = (B[|| - [FDY", Z! is due to F} = (..., €,_1,¢}) and {€,}sez is an independent copy

of {Gt}tez-

Chen et al. (2016), among others, show how one may replace the geometric S-mixing as-
sumption with a physical dependence assumption.'” They show that the key sufficient condition

is for A, (h) to decay sufficiently fast as h grows.

Definition 3.5 (Geometric Moment Contracting Process). {Z;:}iez is geometric moment con-
tracting (GMC) in L™ norm if there exists a; > 0, ag > 0 and 7 € (0, 1] such that

A, (h) < aexp(—ag h").

GMC conditions can be considered more general than S-mixing, as they encompass well-
known counterexamples, e.g., the known counterexample provided by Z; = (Z;—1 + €)/2 for ¢
ii.d. Bernoulli r.v.s (Chen et al., 2016). In the following proposition I prove that if contractivity
or stability conditions as defined by Potscher and Prucha (1997) hold for G and {€;}ez is an

i.i.d. sequence, then process {Z;}icz is GMC under weak moment assumptions.

17T adapt the definitions of Chen et al. (2016) to work with a system of the form Z; = G(Zi—1, ).
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Proposition 3.1. Assume that {€;}iez, € € £ € R arei.i.d. and {Z;}ez is generated according
to
Zy = G(Zi—1, &),

where Zy € Z < R and G is a measurable function.

(a) If contractivity conditions (11)-(12) hold, supcz||€:]|r < © for r = 2 and ||G(Z,€)| < ©
for some (Z,€) € Z x &, then {Zi}iey is GMC with

A, (k) < aexp(—yh)

where v = —log(Cyz) and a = 2||Z||r < o0.

(b) If stability conditions (13)-(14) hold, sup,ezllet||rr < 00 for r = 2 and ||0G/0Z| < Mz <
00, then {Zi}iey, is GMC with

Ar(k) < aexp(—yps h)

where = = —log(Cz)/h* and @ = 2|| Zy|| L max{ ML~ 1}/Cy7 < 0.

Proposition 3.1 is important in that it links the GMC property to transparent conditions on
the structure of the nonlinear model. It also immediately allows handling multivariate systems,
while previous work has focused on scalar systems (c.f. Wu (2011) and Chen et al. (2016)).

Finally, it is now possible to show that if {Ws; }+cz satisfies physical dependence assumptions,
then Assumption 8 is fulfilled, c.f. Lemma 2.2 in Chen and Christensen (2015) for S-mixing

assumptions.

Lemma 3.1. If Assumption 7(iii) holds and {Wattez is strictly stationary and GMC' then
one may choose an integer sequence ¢ = q(n) < n/2 with (n/q)"'qK?A.(q) = o(1) for p =
5/2—(r/2 +2/r) + we and r > 2 such that

~) log K
|(ByBx/n) ~ Icl| = Op (cK,nAK,n«/q = ) = op(1)

provided Cx nAxny/(qlog K)/n = o(1).
It can be seen that Lemma 3.1 holds by setting 4/ K (log(n))?/n = o(1) and choosing ¢(n) =
v~ 1log(KPn"t1), where v is the GMC factor introduced in Proposition 3.1. Therefore, the

rate is the same as the one derived by Chen and Christensen (2015) for exponentially S-mixing

regressors. As shown in Proposition 3.1, system contractivity and stability conditions both
imply geometric moment contractivity, meaning that in place of Assumption 8 one may require

the following.
Assumption 9. For r > 2 it holds either:
(1) {Zi}tez is GMC in L norm,
(ii) {Z;}iez is generated according to Z; = ®(Z—1, ..., Zi—p; &) where sup,ez e/ - < o0 and

® is either contractive according to Definition 3.1 or stable according to Definition 3.3.
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It is straightforward to prove that if GMC conditions are imposed on {Z;}cz, this im-
plies that {Wo;}sez is also GMC.'® Therefore, Lemma 3.1 applies and Assumption 8 as well as

Assumption 5(i) are verified.

3.4 Uniform Convergence and Consistency

Since the key asymptotic condition of Chen and Christensen (2015) is upheld under GMC

assumptions, their uniform convergence bound on the approximation error of the series estimator

can be applied. In order to do so, one must also impose some regularity conditions on mo.
Without loss of generality, let X = [0, 1] and let |[m2||oc := sup,ecy|m2(w)| be the sup-norm

of the conditional mean function ma(w).

Assumption 10. The unconditional density of X; is uniformly bounded away from zero and

infinity over X.

Assumption 11. For all 1 < ¢ < dy and 0 < j < p, the restriction of g%l to [0, 1] belongs to
the Holder class A®([0,1]) of smoothness s > 1.

Assumptions 10 and 11 are standard in the nonparametric regression literature. One only
needs to restrict the complexity of functions gfjl since, for any ¢, the remainder of m; consists
of linear functions. More precisely, what is really needed is that the nonparametric components

of the sieve given by br 1k, ...,br KK are able to approximate g%l well enough.

Assumption 12. Sieve B, belongs to BSpl(, [0,1]%,r), the B-spline sieve of degree r over
[0,1]9, or Wav(k, [0,1]%",7), the wavelet sieve of regularity 7 over [0, 1]%v, with r > max{s, 1}.

In the remainder of the paper, I will consider the cubic spline sieve (r = 3), but theoretical
results are stated in the more general setting. Moreover, d will be the effective dimension of the

joint estimation domain for G?1.

Theorem 3.1 (Chen and Christensen (2015)). Let Assumptions 4, 5, 6, 7, 9, 10, 11 and 12
hold. If
K = (n/log(n))®s*9,

then
||7?§ - 7T2Hoo = Op ((n/log(n)*S/(23+d)>

provided that § > 2/s (in Assumption 6) and d < 2s.

In Theorem 3.1 the sup-norm consistency rate generally depends on the dimension d and
thus, in principle, the curse of dimensionality slows down convergence compared to parametric
estimation. Fortunately, under the current strctural model assumptions, the nonlinear functional
components in 7o are linearly separable in the lag dimension, and thus one may take d = 1 as

effective dimension. This also means that condition d < 2s is trivially satisfied.

18 A formal argument can be found in Appendix B.
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Two-step Consistency. The following theorem ensures that the two-step estimation proce-
dure produces consistent estimates. Since for impulse response functions one needs to study
the iteration of the entire structural model, this results is stated in terms of the full coefficient

matrices.

Theorem 3.2. Let {Zi}1ez be determined by structural model (1). Under Assumptions 1, /,
5, 6, 7,9, 10, 11 and 12, let ﬁl and ﬁg be the least squares and semi-nonparametric series

estimators for 11y and Ila, respectively, based on the two-step procedure. Then,
IT1 = T [|os = Op(n™"/?)

and

~ K A~
|y — Ialj < Op <CK,n>\K,n \/ﬁ> + [|TI3 — T2 |0,

where 115 is the infeasible series estimator involving €1;.

Sup-norm bounds for Hﬁ;‘ — IIz||x follow immediately from Lemma 2.3 and Lemma 2.4
in Chen and Christensen (2015). In particular, choosing the optimal nonparametric rate K =
(n/log(n))¥@s*+4) for the infeasible estimator would yield

ITE5 — o[l = Op ((n/log(n))—s/(28+d)>

as per Theorem 3.1. The condition for consistency in Theorem 3.2 reduces to

K3/2
Jn

since for B-spline and wavelet sieves Ak ,, < 1 and (x,, < VK. It simple to show that if for the

= o(1),

feasible estimator II, the same rate (n/log(n))¥s+d) is chosen for K, the consistency condition

in the above display is fulfilled assuming s > 1 and d = 1."7

Remark 3.3. (Hyperparameter Selection). An important practical question when applying any
series or kernel-type methods is the selection of hyperparameters. For the former, this entails
the choice of the sieve’s size K. Although theory provides only asymptotic rates, a number
of methods can be used to select K, such as cross-validation, generalized cross-validation and
Mallow’s criterion (Li and Racine, 2009). In the case of piece-wise splines, once size is selected,
knots can be chosen to be the K uniform quantiles of the data. This ensures knots are not
located in regions of the domain with very few observations. In simulations and applications,
for simplicity, I select sieve sizes manually and locate knots approximately following empirical
quantiles. In unreported numerical experiments, I check that results are robust to moderate

changes in the number and approximate locations of spline knots.

9The rate for K may be optimized by balancing the uniform (infeasible) rate with the error due to residuals.
Since this paper is not concerned with finding the optimal rate, I do not perform this exercise here.

25



4 Impulse Response Analysis

Once the model’s linear, functional and structural coefficient are consistently estimated, compu-
tation of nonlinear impulse responses must be addressed. As discussed in Section 2, nonlinear
IRFs are generally hard to lay hands on, since the functional MA(c0) form of the process is
highly non-trivial. In this section, I will provide an explicit, iterative algorithm to compute
responses that is numerically straightforward and does not require the construction of moving
average functional coefficients. Moreover, since to derive uniform bounds it is assumed that
the data has compact support, I will introduce a novel yet familiar IRF definition, called the
relaxed impulse response function, which is compatible with boundedness. Lastly, I prove that

semi-nonparametric IRF estimates are consistent with respect to their population counterparts.

4.1 Computation

Recall from equation (7) in Section 2.2 that impulse responses involve two moving average
lag polynomials, ©(L) for the linear model component and I'(L) for the nonlinear component,
respectively. As a first step, one can derive a semi-explicit recursive algorithm for computing

IRF}(9) in a manner that does not involve simulations of the innovations process.

Proposition 4.1 (Gongalves et al. (2021), Proposition 3.1). Under Assumptions 1, 2 and 3,
forany h=0,1,..., H, let

Vi(0) := E[['j X4 ;(6)] — E[T; Xe4j].

To compute

h
IRF),(6) = ©p,10 + Y. V;(9),
j=0

the following steps can be used:
(i) Forj =0, set X¢(0) = Xt + 6 and Vy(9) = E[ToX(0)] — E[IoX¢].

(ii) Forj =1,...,h, let

J
Xi45(0) = Xopj + 05118 + D (Tr1 Xerj—i(6) — Tj11 Xy k)
k=1

=7 (X443 9),
where 7; are implicitly defined and depend on ©(L) and I'(L).
(iii) For j =1,...,h, compute

Vi(6) = B[y (Xewjt:0)] — E[T; X4 4]

The proof of Proposition 4.1 is identical to that in Gongalves et al. (2021), with the only

variation being that in the current setup it is not possible to collect the nonlinear function across
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Xiyj—r(0) and X;4 . Computation of Xyy;(d) in step (ii) involves recursive evaluations of
nonlinear functions, which is why the algorithm is semi-explicit. For each horizon h, one needs
to evaluate h+1 iterations of X;(d). Importantly, however, this approach dispenses from the need
to simulate innovations {e;; }?;11 as the joint distribution of {X;1p—1, X¢4j—1,..., X} already
contains all relevant information. Gongalves et al. (2021) naturally argue that the algorithm
outlined in Proposition 4.1 is significantly more efficient than schemes involving Monte Carlo
simulations like e.g. the one used by Kilian and Vigfusson (2011).

However, {I'; };;1 are combinations of real and functional matrices and closed-form deriva-
tion is numerically impractical. Note that, by the definition of IRFs, the following explicit

iterative algorithm is also valid.

Proposition 4.2. In the same setup of Proposition /.1, to compute IRFp(§) the following steps

can be used:

(i') For j =0, let X¢(0) = X¢+ 9 and

5
IRF,(5) = [Bﬂa] +E
0

0
Go10X¢ |

O —_
G21,0X(0)
(ii') Forj=1,...,h, let

Xie4j(0) = p1 + A12(L) Yy j—1(0) + A1 (L) X4 j—1(0) + €144,
Vit (0) = pa + Asa(L)Yiqj—1(8) + Hor (L) Xy (6) + Bierrrj + uas

where Hgl(L) = Agl(L)L—i—GQl(L) and U2t+j = B3262t+]‘. Settmg Zt+j(5) = (Xt(é), Y%((S))/
it holds
IRF4(8) = B[ Zp4j(0)] — Bl Zej).

Proposition 4.2 follows directly from the definition of the unconditional impulse response
(6) combined with explicit iteration of the semi-reduced form (2) and sidesteps the MA ()
formulation in (7). Step (i') is trivial in nature. Step (ii’) may not seem useful when compared

to (ii), since, in practice, innovations €1; and ug; are not available. However, let
fi, A11(L), A1a(L), An(L), Hi1(L), B3'

be estimates of the model’s coefficients derived, for example, from series estimator ﬁ1 and ﬁg.

In sample, one can compute residuals €1; and U9, and by definition it holds

X =1+ ﬁm(L)Yla + A\II(L>Xt—1 + €1,
Y; = fia + Ago(L)Yi 1 + Hoy (L) X; + B2'&y; + Giay.

This means that one can readily construct the shocked sequence recursively as

Xi1(0) = fir + Ara(L)Yir ;1 (0) + A (L) Xy 1(0) + i,

~

Yiij(0) = fiz + Aoo(L)Yirj1(8) + Hor (L) Xy (6) + B3 @y + fiai,
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for j = 1,...,h where )A(t(é) = X; + 90, X, s = X,_s forall s > 1 and similarly for }A/t((?) To

evaluate a structural IRF, over a sample of size n one can compute

__ 1 "Hra
RE(0) = == 3 [Fers(9) - ¥i].
t=1

which is still considerably less demanding than Monte Carlo simulations. Additionally, the
advantage in implementing steps (i')-(ii’) over the procedure in Proposition 4.1 is that, when
ﬁgl(L) is a semi-nonparametric estimate, iterating model equations is numerically much more

straightforward than handling functional MA matrices {f] };L:l.

4.2 Nonlinear Responses with Relaxed Shocks

Following Proposition 4.1, the sample impulse response would be
——— -~ h -
IRF,(8) := ©5.10 + Y, V;(9), (15)
j=0

where
_ 1 "I ~
Vi(6) = —— [PA- Xipyju; ) — T X ]
5(0) n_Jt;l 75 (Xt j:t5 0) JAt+j

and (:), T and 7; are plug-in estimates of the respective quantities based on ﬁ1 and ﬁg. However,
under Assumptions 4 and 5, the construction of impulse response (15) is improper. This can be

immediately seen by noticing that, at impact,
Xi(8) = 7j(Xi;6) = Xi + 0,

meaning that P(X;(6) ¢ X) > 0 since there is a translation of size ¢ in the support of X;.
The problem is rooted in the fact that the standard definition of IRF involves a translation of
the distribution of time ¢ structural innovations, which is incompatible with the assumptions
imposed in Section 3 to derive semi-nonparametric consistency.

There are multiple ways to address this issue. One option, which would require substantial
technical work, is to extend Theorem 3.2 to encompass regressors with unbounded or expanding
domains. A potential direction could be coupling the weighted sieves of Chen and Christensen
(2015) with appropriately defined shocks. Instead, I propose to take a more direct approach by
changing the type of structural shock one studies in a way consistent with bounded domains for

all variables.
Definition 4.1. A mean-shift structural shock €14(0) is a transformation of €14 such that
P(er(d) € &) =1 and Ele(d)] = 0.

A mean-shift shock is such that the distribution of time ¢ innovations is shifted to have
mean ¢, while retaining support £ almost surely. This definition is natural in that it makes

evaluating the effect of the MA(c0) component of the unconditional IRF straightforward. With
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9 1 1 2

Figure 1: Example of symmetric shock relaxation. Unperturbed (left, blue) versus shocked
(right, orange) densities of innovations €;;. The shock relaxation function (right, gray) and ¢
together determine the form of the relaxed shock used to compute the IRF.

a mean-shift shock, at impact it holds
Xt(é) =X; + Elt((S) — €1¢,

yet €1:(d) — €14 is not known unless the transformation for the mean-shock is itself known.
Unfortunately, the assumption that the mean of €14(d) is exactly equal to § requires that the
distribution of €1; be known to properly choose a mean-shift transform. If instead one is willing
to assume only that E[e1(d)] ~ §, it is possible to sidestep this requirement by introducing a

shock relaxation function.

Definition 4.2 (Shock Relaxation Function). A shock relazation function is a map p : £ —
[0,1] such that p(z) = 0 for all z € R\ &1, p(z) = 0 for all z € & and there exists zp € & for
which p(zp) = 1.

In general, choosing a shock relaxation function without taking into account the shape
of domain &; does not necessarily imply that the relaxed shocks will not push the structural

variable out-of-bounds. Therefore, I also introduce the notion of compatibility.
Definition 4.3 (Compatible Relaxation). Consider a shock 6 € R and let & = [a,b].
(i) If 6 > 0, p is said to be right-compatible with § if

b—=z

9]

p(z) < for all z € E.

(i) If 6 <0, p is said to be left-compatible with § if

p(z) < a|;|s—|z forall z € E.

(iii) Given shock size |0| > 0, p is said to be compatible if it is both right- and left-compatible.

By setting
€1¢(0) = €1y + dp(enr)

29



where p is compatible with 4, it follows that X;(d) = X;+dp(e11) and |E[e1:(5)]] = [0E[p(e14)]] <
|0] since E[p(e14)] € [0, 1) by definition of p. If p is a bump function, a relaxed shock is a structural
shock that has been mitigated proportionally to the density of innovations at the edges of &
and the squareness of p. For better intuition, Figure 1 provides a graphical rendition of shock

relaxation of a symmetric error distribution with a bump function.

Remark 4.1. The definition of compatible relaxation function is static, as it considers only the
impact effect of a shock. Nonetheless, the assumption that X; € X for all ¢ must also hold for
X¢(9), the shocked structural variable. In theory, given 4, one can always either expand X’ or
strengthen p so that compatibility is enforced at all horizons 1 < h < H. For simulations, where
one has access to the data generating process, the choice of domains and relaxation functions
can be done transparently. In practice, some care is required. When working with empirical
data, unless one is willing to assume X; is wholly exogenous — as in Section 6.1 with monetary
policy shocks — or strictly autoregressive, some scenarios are more amenable to analysis with
the framework presented here than other. In Section 6.2, following Istrefi and Mouabbi (2018),
I will let X; be a non-negative uncertainty measure, so that negative shocks are harder to study
without producing sequences that contain negative uncertainty values. Thus, I will focus on

positive, contractionary shocks.

For a given Xy, transformation X;+3p(€1) is not directly applicable since €14 is not observed.

In practice, therefore, I will consider
X:(8) := Xy + Sp(ene).

For simplicity of notation, let &; := dp(e1;). Similarly to Step (ii) of Proposition 4.1, given a
path X;;.; one finds

J
Xiyj(0r) = Xy + 05110 + Z (Cre1 Xt j—k(6¢) = T 11 Xeqj—k)
k=1
= Y (Xiqjut; 0t),

The relaxed-shock impulse response is thus given by

j
IRF,(6) = Bl Ze+5 (1) — Zi4s] = Ona0 Bo(exn)] + ) B [TkXoss x(B0) = TeXoes ]
k=1

In what follows, I show that by replacing St with gt = dp(€1) it is possible to consistently
estimate unconditional expectations involving Xtﬂ-(gt) as well as Xy, ;, and thus Iﬁ?h(é), by
averaging over sample realizations.

4.3 Relaxed Impulse Response Consistency

For a given § € R and compatible shock relaxation function p, vector V;(d) is the nonlinear

component of impulse responses. One can focus on a specific variable’s response by introducing,
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for 1 < ¢ <d,
n—j

1 ~
- Z [FJ,WJ‘(Xt+j:t%5t) - Fjvat”] ’

Vie(0) i= —— ;
t=1

where Vj ¢(6) is the horizon j nonlinear effect on the ¢th variable and T'; is the ¢th component

of functional vector I';. For the sake of notation I also define
0 0( Xt i3 08) 2= Do (Xig g 0¢) — T Xy
Let 0j0(X¢4 1 gt) be its sample equivalent, so that

00 (Xiqji:00) = Lo (Xiqjie: 00) — Lo Xig g,
. 1

j,é(5) = E ; 5]‘,( (Xt+j:t§ gt)

and

for 1 </ <d.

Theorem 4.1. Let H{/\F‘h7g(5) be a semi-nonparametric estimate for the horizon h relaxed shock

IRF of variable 0. Under the same assumptions as in Theorem 5.2
IRF},¢(5) 5 IRF}4(6)

for any fized integers 0 < h <o and 1 < £ < d.

5 Simulations

This section is devoted to analyzing the empirical performance of the two-step semi-nonparametric
estimation strategy discussed above. I will consider the two simulation setups employed by
Gongalves et al. (2021), with focus on bias and MSE of the estimated relaxed shocked impulse
response functions. Additionally, I provide simulations under a modified design which high-
light how in larger samples the non-parametric sieve estimator consistently recovers impulse
responses, while a least-squares estimator constructed with a pre-specified nonlinear transform

does not. In all simulations, I use a B-spline sieve of order 1.

5.1 Benchmark Bivariate Design

The first simulation setup involves a bivariate DGP where the structural shock does not directly
affect other observables. This is a simple environment to check that indeed the two-step estimator
recover the nonlinear component of the model and impulse responses are consistently estimated,
and that the MSE does not worsen excessively.

I consider three bivariate data generation processes. DGP 1 sets X; to be a fully exogenous
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innovation process,

Xt = €1¢, (16)
Y: = 0.5Y;-1 + 0.5X; + 0.3X;—1 — 0.4max(0, X;) + 0.3 max (0, X;—1) + €.
DGP 2 adds an autoregressive component to X, but maintains exogeneity,
X =0.5X 1 + €1, (17)
Y, =0.5Y;-1 + 0.5X; + 0.3X;—1 — 0.4max(0, Xy) + 0.3max(0, X;—1) + €.
Finally, DGP 3 add an endogenous effect of Y;_1 on the structural variable by setting
X =05X; 1+ 0.2Y;_1 + €14,
(18)

Y; = 0.5Y;1 + 0.5X; + 0.3X;_1 — 0.4max(0, X;) + 0.3 max(0, X;_1) + €2

Following Assumption 1, innovations are mutually independent. To accommodate Assumptions
4 and 5, both €1; and €9; are drawn from a truncated standard Gaussian distribution over
[—3,3].2° All DGPs are centered to have zero intercept in population.

I evaluate bias and MSE plots using 1000 Monte Carlo simulation. For a chosen horizon
H, the impact of a relaxed shock on €1, is evaluated on Y,y for h =1,..., H. To compute the
population IRF, I employ a direct simulation strategy that replicates the shock’s propagation
through the model and I use 10000 replications. To evaluate the estimated IRF, the two-step
procedure is implemented: a sample of length n is drawn, the linear least squares and the semi-
nonparametric series estimators of the model are used to estimate the model and the relaxed

IRF is computed following Proposition 4.2. For the sake of brevity, I discuss the case of § = 1

)

p(z) = exp <1 + H?)

over interval [—3, 3] and zero everywhere else.”! Choices of § = —1 and § = £0.5 yield similar

and I set the shock relaxation function to be

results in simulations, so I do not discuss them here.

Figure 2 contains the results for sample size n = 240. This choice is motivated by considering
the average sample sizes found in most macroeconometric settings: it is equivalent to 20 years
of monthly data or 60 yearly of quarterly data (Gongalves et al., 2021). The benchmark method
is an OLS regression that relies on a priori knowledge of the underlying DGP specification.
Given the moderate sample size, to construct the cubic spline sieve estimator of the nonlinear
component of the model I use a single knot, located at 0. The simulations in Figure 2 show that

while the MSE is slighlty higher for the sieve model, the bias is comparable across methods. Note

et ey ~ N(0,1) for ¢ = 1,2, then the truncated Gaussian innovations used in simulation are set to be
€+ = min(max(—3, e;¢),3). The resulting r.v.s have a non-continuous density with two mass points at -3 and 3.
However, in practice, since these masses are negligible, for the moderate sample sizes used this choice does not
create issues.

21Tt can be easily checked that this choice of p is compatible with shocks of size 0 < |§] < 1.

32



DGP 1 — MSE
-3 n =240
15110
10
5 .
Op i : : : 1
0 5 10 15 20 25
Horizon
\ Sieve oLs
DGP 2 — MSE
-3 n =240
15110
10 1
5t
0 pr o ! ‘ ‘
0 5 10 15 20 25
Horizon
Sieve OoLS
DGP 3 — MSE
n =240
015
0.1
0.05 1
0 L " " " )
0 5 10 15 20 25
Horizon
Sieve oLS

DGP 1 — Bias

n =240
0.01
0.005
-0.005
-0.01
-0.015
-0.02 . . . !
0 10 15 20 25
Horizon
Sieve oLs
DGP 2 — Bias
n =240
0.01r
0.005
0
-0.005
-0.01
-0.015
.02 . . . )
0 10 15 20 25
Horizon
Sieve oLs
DGP 3 — Bias
n =240
S
-0.11
0.2
-0.31
0.4 . . . )
0 10 15 20 25
Horizon
Sieve oLS

Figure 2: Simulations results for DGPs 1-3.
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that for DGP 3, due to the dependence of the structural variable on non-structural series lags,
the MSE and bias increase significantly, and there is no meaningful difference in performance

between the two estimation approaches.

5.2 Structural Partial Identification Design

To showcase the validity of the proposed sieve estimator under the type of partial structural
identification discussed in the paper, I again rely on the simulation design proposed by Gongalves
et al. (2021). All specifications are block-recursive, and require estimating the contemporaneous
effects of a structural shock on non-structural variables, unlike in the previous section.

The form of the DGPs is

BoZy = B1Zi—1 + Co f(Xy) + C1f(Xi—1) + €,

where in all variations of the model

1 0 0 0 0
By=|-045 1 -03|, Co=|-02|, and Cj=|-0.1
—0.05 0.1 1 0.08 0.2

I focus on the case f(x) = max(0, z), since this type of nonlinearity is simpler to study. DGP 4

treats X; as an exogenous shock by setting

0 0 0
By =1 015 0.17 —0.18];
—-0.08 0.03 0.6

DGP 5 add serial correlation to Xy,

-0.13 0 0
By =1 015 0.17 —-0.18];
—-0.08 0.03 0.6

and DGP 6 includes dependence on Y;_1,

-0.13 0.05 -0.01
By=| 015 0.17 —-0.18
—-0.08 0.03 0.6

For these data generating processes, I employ the same setup of simulations with DGPs 1-3,
including the number of replications as well as the type of relaxed shock. as well as the sieve
grid. Here too I evaluate MSE and bias of both the sieve and the correct specification OLS
estimators with as sample size of n = 240 observations. The results in Figure 3 show again that
there is little difference in terms of performance between the semi-nonparametric sieve approach

and a correctly-specified OLS regression.
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Figure 3: Simulations results for DGPs 4-6.
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Figure 4: Plot of nonlinear function ¢(x) used in DGP 7.

5.3 Model Misspecification

The previous sections report results that support the use of the sieve IRF estimator in a sample of
moderate size, since it performs comparably to a regression performed with a priori knowledge
of the underlying DGP. I now show that the semi-nonparametric approach is also robust to
model misspecification compared to simpler specifications involving fixed choices for nonlinear
transformations.

To this end, I modify DGP 2 to use a smooth nonlinear transformation to define the effect
of structural variable X; on Y;. That is, there is no compounding of linear and nonlinear effects.
The autoregressive coefficient in the equation for X; is also increased to make the shock more

persistent. The new data generating process, DGP 2/, is, thus, given by

X =0.8X; 1+ €14,

(19)
Y; =0.5Y;1 + O.Q(p(Xt) + 0.5(,0(Xt_1) + €9¢.

where ¢(z) := (z — 1)(0.5 + tanh(x — 1)/2), which is plotted in Figure 4.

To emphasize the difference in estimated IRFs, in this setup I focus on § = +2, which
requires adapting the choice of innovations and shock relaxation function. In simulations of
DGP 2/, €1; and ey are both drawn from a truncated standard Gaussian distribution over
[—5,5]. The shock relaxation function of this setup is given by

3.9 -1
z B 1] )
5

p(z) = exp (1 + H

over interval [—5,5] and zero everywhere else. This form of p is adapted to choices of § such
that 0 < |§] < 2. The sieve grid now consists of 4 equidistant knots within (—5,5). T use the
same numbers of replications as in the previous simulations. Finally, the regression design is
identical to that used for DGP 2 under correct specification.

The results obtained with sample size n = 2400 are collected in Figure 5. I choose this larger
sample size to clearly showcase the inconsistency of impulse responses under misspecification:

as it can be observed, the simple OLS estimator involving the negative-censoring transform
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Figure 5: Simulations results for DGP 7.
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produces IRF estimates with consistently worse MSE and bias than those of the sieve estimator
at almost all horizons. Similar results are also obtained for more moderate shocks § = +1,
but the differences are less pronounced. These simulations suggest that the semi-nonparametric
sieve estimator can produce substantially better IRF estimates in large samples than methods
involving nonlinear transformations selected a priori.

In this setup, it is also important to highlight the fact that the poor performance of OLS
IRF estimates does not come from ¢(z) being “complex”, and, thus, hard to approximate by
combinations of simple functions. In fact, if in DGP 2’ function ¢ is replaced by @(x) :=
@(x + 1), the differences between sieve and OLS impulse response estimates become minimal in
simulations, with the bias of the latter decreasing by approximately an order of magnitude (see
Figure 8 in Appendix C). This is simply due the fact that $(x) is well approximated by max (0, x)
directly. However, one then requires either prior knowledge or sheer luck when constructing the
nonlinear transforms of X; for an OLS regression. The proposed series estimator, instead,
just requires an appropriate choice of sieve. Many data-driven procedures to select sieves in

applications have been proposed, see for example the discussion in Kang (2021).

6 Empirical Applications

In this section, I showcase the practical utility of the proposed semi-nonparametric sieve estima-
tor by considering two applied exercises. First, I revisit the empirical analysis of Gongalves et al.
(2021), which is itself based on the work of Tenreyro and Thwaites (2016). This provides both
linear and nonlinear benchmarks for the monetary policy responses within a compact econo-
metric model. I find that, although the differences between approaches are mild, nonparametric
IRFs in fact provide counter-evidence to the conclusions reported by Gongalves et al. (2021). In
the second application, I compare the linear and nonlinear impulse responses that are produced
by uncertainty shocks in the setup studied by Istrefi and Mouabbi (2018). Here, sieve-estimated

IRFs show differences in shape, timing and intensity, chiefly when the sign of the shock changes.

6.1 Monetary Policy Shocks

The objective of the empirical analysis in Gongalves et al. (2021) is to analyze the effects of a
monetary policy shock on a model of the US macroeconomy. Structural identification is achieved
via a narrative approach, following the seminal work of Romer and Romer (2004).

The four-variable model is set up identically to the one of Gongalves et al. (2021), Section
7. Let Z; = (X, FFRy, GDPy, PCE,)’, where X; is the series of narrative U.S. monetary policy
shocks, FFRy is the federal funds rate, GDP; is log real GDP and PCE; is PCE inflation.”? As

22Tn Congalves et al. (2021) p. 122, it is mentioned that CPI inflation is included in the model, but both
in the replication package made available by one the authors (https://sites.google.com/site/1lkilian2019/
research/code) from which I source the data, and Tenreyro and Thwaites (2016), PCE inflation is used instead.
Moreover, the authors say that both the FFR and PCE enter the model in first differences, yet in their code these
variables are kept in levels. I keep their original formulation to allow for a proper comparison between estimation
methods.

38


https://sites.google.com/site/lkilian2019/research/code
https://sites.google.com/site/lkilian2019/research/code

a pre-processing step, GDP is transformed to log GDP and then linearly detrended. The data
is available quarterly and spans from 1969:Q1 to 2007:Q4. As in Tenreyro and Thwaites (2016),
I use a model with one lag, p = 1. Narrative shock X; is considered to be an i.i.d. sequence,
i.e. X = eqy, therefore I assume no dependence on lagged variables when implementing pseudo-
reduced form (2). Like in Gongalves et al. (2021), I consider positive and negative shocks of size

|| = 1. As such, I choose
6 -1
z|° 1] )

p(2) = || < 4} exp (1 + H4

to be the shock relaxation functions. Figure 10 in Appendix C provides a check for the validity of
p given the sample distribution of X;. Knots for sieve estimation are located at {—1,0,1}. The
model is block-recursive, and the structural formulation of Section 2.2 allows identifying the U.S.
monetary policy shocks without the need to impose additional assumptions on the remaining
shocks. Gongalves et al. (2021), following Tenreyro and Thwaites (2016), use two nonlinear
transformations, F'(z) = max(0,x) and F(x) = 23, to try to gauge how negative versus positive
and large versus small shocks, respectively, affect the U.S. macroeconomy. For clarity, below
I refer to this approach as “parametric nonlinear method”. Since the authors find that the
inclusion of a cubic term does not meaningfully change impulse responses, I focus on comparing
the IRFs estimated via sieve regression with the ones obtained by setting F'(x) = max(0,x), as
well as by not including nonlinear terms (i.e. linear IRFs).

Figure 6 shows the estimated impulse response to both a positive and negative unforeseen
monetary policy shock. The impact on the federal funds rate is consistent across all three
procedures, but there are important differences in GDP and inflation responses. In case of an
exogenous monetary tightening change, the parametric nonlinear response for GDP, unlike in
the case of linear and parametric nonlinear IRFs, is nearly zero at impact and has a monotonic
decrease until around 10 quarters ahead. The change is shape is meaningful, as the procedure
of Gongalves et al. (2021) still yields a small short-term upward jump in GDP when a monetary
tightening shock hits. Moreover, after the positive shock, the sieve GDP responses reaches its
lowest value 4 and 2 quarters before the linear and parametric nonlinear responses, while its size
is 13% and 16% larger, respectively.?? Finally, the sieve PCE response is positive for a shorter
interval, but looks to be more persistent once it turns negative also 10 months after impact.

When the shock is expansionary, sieve IRFs show a pronounced asymmetry, even more than
that of parametric nonlinear responses. One can observe that semi-nonparametric federal funds
rate IRF is marginally mitigated compared to the alternative estimates. An important puzzle
is due to the clearly negative impact on GDP. Indeed, both types of nonlinear responses show
a drop in output in the first 5 quarters. Also note that the PCE inflation has a positive spike
the first couple of quarters after impact. Such a quick change seems unrealistic, as one does not

expect inflation to suddenly reverse sign, but, as Gongalves et al. (2021) also remark, the overall

Z3The strength of this effect changes across different shocks sizes, as Figure 12 in Appendix C proves. As
shocks sizes get smaller, nonlinear IRFs, both parametric and sieve, show decreasing negative effects.
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Figure 6: Effect of an unexpected U.S. monetary policy shock on federal funds rate, GDP and
inflation. Linear (gray, dashed), parametric nonlinear with F'(x) = max(0, z) (red, point-dashed)
and sieve (blue, solid) structural impulse responses. For § = +1, the lowest point of the GDP
response is marked with a dot.

impact on inflation of both shocks is small when compared to the change in federal funds rate.

This comparison between methods, and specifically the nature of nonparametric impulse
responses, provides evidence that a small econometric model, such as the one studied by Tenreyro
and Thwaites (2016), may be inadequate to fully capture the dynamic effects of monetary policy
shocks. In both setups, however, impulse response interpretation is only suggestive, as confidence
bands are missing and only pointwise IRFs are available. Whether the puzzles highlighted above
would persist after accounting for estimation uncertainty is an important research question that

I leave for future analysis.

6.2 Uncertainty Shocks

Uncertainty in interest rates appears to be a significant factor in recent economic history. Start-
ing with the fundamental changes brought forth by the unprecedented measures of unconven-
tional monetary policy after the 2007-2008 financial crisis, to the powerful economic stimuli
during the COVID-19 pandemic, and finally the subsequent interest rate tightening and in-

flation phenomenon of 2022, central banks and institutional agents are often very concerned
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about uncertainty. Since traditional central bank policymaking is heavily guided by the prin-
ciple that the central bank can and should influence expectations, controlling the (perceived)
level of ambiguity in current and future commitments is key.

Istrefi and Mouabbi (2018) provide an analysis of the impact of unforeseen changes in the
level of subjective interest rate uncertainty on the macroeconomy. They derive a collection of
new indices based on short- and long-term profession forecasts. Their empirical study goes in
depth into studying the different components that play a role in transmitting uncertainty shocks,
but here I will focus on re-evaluating their structural impulse response estimates under the light
of potentially-missing nonlinear effects. For the sake of simplicity, my evaluation will focus only
on the 3-months-ahead uncertainty measure for short-term interest rate maturities (3M3M) and
the US economy.’*

Like in Istrefi and Mouabbi (2018), let Z; = (Xi,1P;, CPL;, PPI;, RT:, UR;)" be a vector
where X, is the chosen uncertainty measure, IP; is the (log) industrial production index, CPI,
is the CPI inflation rate, PPI; is the producer price inflation rate, RT; is (log) retail sales and

URjy is the unemployment rate. The nonlinear model specification is given by
Jy = n+ Alzt,l + AQthl + Fl(thl) + FQ(Xt72) + DW; + U,

where W; includes a linear time trend and oil price OIL;.?° The data has monthly frequency and

5.%5 Note here that, following the identification

spans the period between May 1993 and July 201
strategy of Gongalves et al. (2021), nonlinear functions F} and F» are to be understood as not
effecting X;, which is the structural variable. The linear VAR specification of Istrefi and Mouabbi
(2018) is recovered by simply assuming F} = F» = 0 prior to estimation. Since they use recursive
identification and order the uncertainty measure first, this model too is block-recursive.

I consider a positive shock with intensity § = o1, where o1 is the standard deviation of

structural innovations. In this empirical exercise, the relaxation function is given by

pz) = H{|Z| < i}exp (1 + [|4x|8 B 1]1>

and I set {0.1,0.3} to be the cubic spline knots. As 3M3M is a non-negative measure of un-
certainty, some care must be taken to make sure that the shocked paths for X; do not reach
negative values. Figure 14 in Appendix C shows that the relaxation function is compatible, and
also that the shocked nonlinear paths of X; with impulse § and ¢’ all do not cross below zero.
Figure 7 presents both the linear and nonlinear structural impulse responses obtained.

Importantly, even though Istrefi and Mouabbi (2018) estimate a Bayesian VAR model and here

Hstrefi and Mouabbi (2018) also provide comparisons with results obtained with the other uncertainty mea-
sures, which they comment are all very similar to the ones obtained with 3M3M. Their paper additionally evaluates
a number of other highly developed countries.

ZInclusion of linear exogenous variables in the semi-nonparametric theoretical framework detail in Section 3
is straightforward as long as one can assume that they are stationary and weakly dependent. The choice of using
p = 2 is identical to that of the original authors, based on BIC.

26T reuse the original data employed by the authors, who kindly shared it upon request, but rescale retail sales
(RT:) so that the level on January 2000 equals 100.
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Figure 7: Effect of an unexpected, one-standard-deviation uncertainty shock to US macroeco-
nomic variables. Linear (gray, dashed) and sieve (blue, solid) structural impulse responses. The
extreme points of the responses are marked with a dot.

I consider a frequentist vector autoregressive benchmark, the shape of the IRFs is retained, c.f.
the median response in the top row of their Figure 4. When uncertainty increases, industrial
production drops, and the size and extent of this decrease is intensified in the nonlinear responses.
In fact, the sieve IP response reaches a value that is 54% lower than that of the respective linear
IRF.?" A similar behavior holds true for retail sales (38% lower) and unemployment (23% higher),
proving that this shock is more profoundly contractionary than suggested by the linear VAR
model. Further, CPI and PP inflation both show short-term fluctuations which strengthen the
short- and medium-term impact of the shock. CPI and PP nonlinear inflation responses are
76% and 41% stronger than their linear counterpart, respectively. These differences suggest
that linear IRFs might be both under-estimating the short-term intensity and misrepresenting
long-term persistence of inflation reactions. From another perspective, Nowzohour and Stracca
(2020) presented evidence that consumer consumption growth, credit growth and unemployment
do not co-move with the policy uncertainty index (EPU) of Baker et al. (2016), but are negatively
correlated with financial volatility. Given the strength of nonlinear IRFs, this discrepancy may
also suggest that the 3M3M uncertainty measure partially captures the financial channel, too.
The introduction of nonlinear terms in the structural VAR of Istrefi and Mouabbi (2018)
thus provides evidence that fundamental impulse response features might otherwise be missed.

Indeed, Figure 13 in Appendix C - which plots regression functions of endogenous variables

2TFigure 15 in Appendix C confirms that this difference is consistent over a range of shock sizes, too.
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with respect to X; - proves that high and low uncertainty levels may have significantly different
effects on endogenous economic variables. In particular, at the second lag, tail effects appear to

be milder, while at low levels changes in uncertainty have more pronounced impact.

7 Conclusion

This paper studies the application of semi-nonparametric series estimation to the problem of
structural impulse response analysis for time series. After first discussing the partial identifi-
cation model setup, I have used the conditions of system contractivity and stability to derive
physical measures of the dependence for nonlinear systems. In turn, these allow to derive
primitive conditions under which series estimation can be employed and structural IRFs are
consistently estimated. The simulation results prove that this approach is valid in moderate
samples and has the added benefit of being robust to misspecification of the nonlinear model
components. Finally, two empirical applications showcase the utility in departing from both
linear and parametric nonlinear specifications when estimating structural responses.

There are many possible avenues for extending the results I have presented here. A key
aspect that I have not touched upon is inference in the form of confidence intervals: the theory
of Chen and Christensen (2015) does not encompass uniform inference, and, as such, additional
results have to be developed. Indeed, (uniform) confidence bands are necessary to properly
quantify the uncertainty of IRF estimates. Belloni et al. (2015) give a uniform asymptotic
inference theory, but their derivations are limited to non-dependent data. Li and Liao (2020)
and Cattaneo et al. (2022) provide theoretical coupling results that could be exploited in order
to handle time series data. Chen and Christensen (2018) give a theory of uniform inference for
panel IV setups, which could possibly be generalized to handle nonlinear IRFs. In the spirit
of Kang (2021), it would be also important to derive inference results that are uniform in the
selection of series terms, as, in practice, a data-driven procedure for selecting K should be used.
Studying other sieve spaces, such as neural networks or shape-preserving sieves (Chen, 2007),
would also be highly desirable. The latter can be especially useful in contexts where economic
knowledge suggests that the nonlinear components of the model are e.g. strictly monotonic
increasing or convex. Finally, sharpening of convergence rates used in the main proofs is of

independent interest.

43



References

Auerbach, A. J. and Gorodnichenko, Y. (2012). Measuring the Output Responses to Fiscal

Policy. American Economic Journal: Economic Policy, 4(2):1-27.

Baker, S. R., Bloom, N., and Davis, S. J. (2016). Measuring Economic Policy Uncertainty. The
Quarterly Journal of Economics, 131(4):1593-1636.

Belloni, A., Chernozhukov, V., Chetverikov, D., and Kato, K. (2015). Some new asymptotic
theory for least squares series: Pointwise and uniform results. Journal of Econometrics,
186(2):345-366.

Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods. Springer Science
& Business Media.

Caggiano, G., Castelnuovo, E., Colombo, V., and Nodari, G. (2015). Estimating Fiscal Multi-
pliers: News From A Non-linear World. The Economic Journal, 125(584):746-776.

Caggiano, G., Castelnuovo, E., and Figueres, J. M. (2017). Economic policy uncertainty and

unemployment in the United States: A nonlinear approach. Economics Letters, 151:31-34.

Caggiano, G., Castelnuovo, E., and Pellegrino, G. (2021). Uncertainty shocks and the great

recession: Nonlinearities matter. Fconomics Letters, 198:109669.

Cattaneo, M. D., Farrell, M. H., and Feng, Y. (2020). Large sample properties of partitioning-
based series estimators. The Annals of Statistics, 48(3):1718-1741.

Cattaneo, M. D., Masini, R. P., and Underwood, W. G. (2022). Yurinskii’s Coupling for Mar-
tingales. Working Paper.

Chen, X. (2007). Chapter 76 Large Sample Sieve Estimation of Semi-Nonparametric Models.
In Heckman, J. J. and Leamer, E. E., editors, Handbook of Econometrics, volume 6, pages
5549-5632. Elsevier.

Chen, X. (2013). Penalized Sieve Estimation and Inference of Seminonparametric Dynamic
Models: A Selective Review. In Acemoglu, D., Arellano, M., and Dekel, E., editors, Advances

in Economics and Econometrics, pages 485-544. Cambridge University Press, 1 edition.

Chen, X. and Christensen, T. M. (2015). Optimal uniform convergence rates and asymptotic
normality for series estimators under weak dependence and weak conditions. Journal of
Econometrics, 188(2):447-465.

Chen, X. and Christensen, T. M. (2018). Optimal sup-norm rates and uniform inference on

nonlinear functionals of nonparametric IV regression. Quantitative Economics, 9(1):39-84.

Chen, X., Shao, Q.-M., Wu, W. B, and Xu, L. (2016). Self-normalized Cramér-type moderate
deviations under dependence. The Annals of Statistics, 44(4):1593-1617.

44



Chen, X. and Shen, X. (1998). Sieve Extremum Estimates for Weakly Dependent Data. Econo-
metrica, 66(2):289.

Chetverikov, D., Santos, A., and Shaikh, A. M. (2018). The Econometrics of Shape Restrictions.
Annual Review of Economics, 10(1):31-63.

Debortoli, D., Forni, M., Gambetti, L., and Sala, L. (2020). Asymmetric Effects of Monetary
Policy Easing and Tightening. Working Paper.

Fan, J. and Yao, Q. (2003). Nonlinear time series: monparametric and parametric methods,

volume 20. Springer.

Farrell, M. H., Liang, T., and Misra, S. (2021). Deep Neural Networks for Estimation and
Inference. Econometrica, 89(1):181-213.

Feng, B. Q. (2003). Equivalence constants for certain matrix norms. Linear Algebra and its
Applications, 374:247-253.

Forni, M., Gambetti, L., Maffei-Faccioli, N., and Sala, L. (2023a). Nonlinear transmission of

financial shocks: Some new evidence. Journal of Money, Credit and Banking.

Forni, M., Gambetti, L., and Sala, L. (2023b). Asymmetric effects of news through uncertainty.

Macroeconomic Dynamics, pages 1-25.
Freyberger, J. and Reeves, B. (2018). Inference under Shape Restrictions. Working Paper.

Fuleky, P., editor (2020). Macroeconomic Forecasting in the Era of Big Data: Theory and
Practice, volume 52 of Advanced Studies in Theoretical and Applied Econometrics. Springer

International Publishing, Cham.

Gambetti, L., Maffei-Faccioli, N., and Zoi, S. (2022). Bad News, Good News: Coverage and

Response Asymmetries. Working Paper.

Gao, J. (2007). Nonlinear Time Series: Semiparametric and Nonparametric Methods. Chapman
and Hall/CRC.

Gongalves, S., Herrera, A. M., Kilian, L., and Pesavento, E. (2021). Impulse response analysis for
structural dynamic models with nonlinear regressors. Journal of Econometrics, 225(1):107—
130.

Gourieroux, C. and Jasiak, J. (2005). Nonlinear Innovations and Impulse Responses with Ap-

plication to VaR Sensitivity. Annales d’Economie et de Statistique, pages 1-31.

Gourieroux, C. and Lee, Q. (2023). Nonlinear impulse response functions and local projections.

Working Paper.
Hamilton, J. D. (1994a). State-space models. Handbook of Econometrics, 4:3039-3080.

Hamilton, J. D. (1994b). Time Series Analysis. Princeton University Press.

45



Hérdle, W., Litkepohl, H., and Chen, R. (1997). A Review of Nonparametric Time Series
Analysis. International Statistical Review, 65(1):49-72.

Horn, R. A. and Johnson, C. R. (2012). Matriz Analysis. Cambridge University Press, second

edition.

Horowitz, J. L. and Lee, S. (2017). Nonparametric estimation and inference under shape restric-
tions. Journal of Econometrics, 201(1):108-126.

Huang, Y., Chen, X., and Wu, W. B. (2014). Recursive Nonparametric Estimation for Time
Series. IEEE Transactions on Information Theory, 60(2):1301-1312.

Istrefi, K. and Mouabbi, S. (2018). Subjective interest rate uncertainty and the macroeconomy:

A cross-country analysis. Journal of International Money and Finance, 88:296-313.

Jorda, O. (2005). Estimation and Inference of Impulse Responses by Local Projections. American
Economic Review, 95(1):161-182.

Kanazawa, N. (2020). Radial basis functions neural networks for nonlinear time series analysis

and time-varying effects of supply shocks. Journal of Macroeconomics, 64:103210.

Kang, B. (2021). Inference In Nonparametric Series Estimation with Specification Searches for
the Number of Series Terms. Econometric Theory, 37(2):311-345.

Kilian, L. and Liitkepohl, H. (2017). Structural Vector Autoregressive Analysis. Themes in

Modern Econometrics. Cambridge University Press, Cambridge.

Kilian, L. and Vega, C. (2011). Do energy prices respond to us macroeconomic news? a test of
the hypothesis of predetermined energy prices. Review of Economics and Statistics, 93(2):660—
671.

Kilian, L. and Vigfusson, R. J. (2011). Are the responses of the us economy asymmetric in

energy price increases and decreases? Quantitative Economics, 2(3):419-453.

Koop, G., Pesaran, M. H., and Potter, S. M. (1996). Impulse response analysis in nonlinear

multivariate models. Journal of Econometrics, 74(1):119-147.

Lanne, M. and Nyberg, H. (2023). Nonparametric Impulse Response Analysis in Changing

Macroeconomic Conditions. Working Paper.

Li, J. and Liao, Z. (2020). Uniform nonparametric inference for time series. Journal of Econo-

metrics, page 14.
Li, Q. and Racine, J. S. (2009). Nonparametric econometric methods. Emerald Group Publishing.

Liitkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. New York : Springer,

Berlin.

46



Movahedifar, M. and Dickhaus, T. (2023). On the closed-loop Volterra method for analyzing

time series. Working Paper.

Nowzohour, L. and Stracca, L. (2020). More than a feeling: Confidence, uncertainty, and

macroeconomic fluctuations. Journal of Economic Surveys, 34(4):691-726.

Pellegrino, G. (2021). Uncertainty and monetary policy in the US: A journey into nonlinear
territory. Economic Inquiry, 59(3):1106-1128.

Potscher, B. M. and Prucha, 1. (1997). Dynamic nonlinear econometric models: Asymptotic

theory. Springer Science & Business Media.

Potter, S. M. (2000). Nonlinear impulse response functions. Journal of Economic Dynamics
and Control, 24(10):1425-1446.

Ramey, V. A. and Zubairy, S. (2018). Government spending multipliers in good times and in
bad: evidence from us historical data. Journal of political economy, 126(2):850-901.

Romer, C. D. and Romer, D. H. (2004). A new measure of monetary shocks: Derivation and

implications. American economic review, 94(4):1055-1084.
Sims, C. A. (1980). Macroeconomics and Reality. Econometrica, 48(1):1-48.

Sirotko-Sibirskaya, N., Franz, M. O., and Dickhaus, T. (2020). Volterra bootstrap: Resampling

higher-order statistics for strictly stationary univariate time series. Working Paper.

Stock, J. H. and Watson, M. W. (2016). Dynamic factor models, factor-augmented vector
autoregressions, and structural vector autoregressions in macroeconomics. In Handbook of

Macroeconomics, volume 2, pages 415-525. Elsevier.

Tenreyro, S. and Thwaites, G. (2016). Pushing on a string: US monetary policy is less powerful

in recessions. American Economic Journal: Macroeconomics, 8(4):43-74.

Terdsvirta, T., Tjgstheim, D., and Granger, C. W. J. (2010). Modelling Nonlinear Economic

Time Series. Oxford University Press.

Tong, H. (1990). Non-linear Time Series: a Dynamical System Approach. Oxford University

Press.

Tropp, J. A. (2012). User-Friendly Tail Bounds for Sums of Random Matrices. Foundations of
Computational Mathematics, 12(4):389-434.

Tsay, R. S. and Chen, R. (2018). Nonlinear Time Series Analysis, volume 891. John Wiley &

Sons.

Tsybakov, A. B. (2009). Introduction to Nonparametric Estimation. Springer Series in Statistics.
Springer, New York ; London.

47



Wu, W. B. (2005). Nonlinear system theory: Another look at dependence. Proceedings of the
National Academy of Sciences, 102(40):14150-14154.

Wu, W. B. (2011). Asymptotic theory for stationary processes. Statistics and its Interface,
4(2):207-226.

Wu, W. B., Huang, Y., and Huang, Y. (2010). Kernel estimation for time series: An asymptotic
theory. Stochastic Processes and their Applications, 120(12):2412-2431.

48



Appendix

A  Preliminaries

Matrix Norms. Let
|A]l; := max {||Az]|, | [|«[l, < 1}

be the r-operator norm of matrix A € C4*92. The following Theorem establishes the equivalence

between different operator norms as well as the compatibility constants.

Theorem A.1 (Feng (2003)). Let 1 < p,q < . Then for all A e Ch*d2,
[Allp < Ap.q(di)Agp(d2) ]| Allg;
where
1 ifa>=b,
Aap(d) =
di/e=1/b if 4 < b.

This norm inequality is sharp.

In particular, if p > ¢ then it holds

1

a4l <14l < (dy) Y222 A,

B Proofs

B.1 GMC Conditions and Proposition 3.1

Lemma B.1. Assume that {¢;}ez, € € £ S R are i.i.d., and {Z;}icz is generated according
to
Zy = G(Zt—laet)7

where Z; € Z € R and G is a measurable function. If either
(a) Contractivity conditions (11)-(12) hold, sup,ez||€tl|r < o0 and ||G(zZ,€)|| < w© for some
(z,6) e Z x&;
(b) Stability conditions (13)-(14) hold, sup,ey||€||rr < 00 and ||0G/0Z|| < Mz < o0;

then
SltlpHZt”Lr <o w.p.l.

Proof.
(a) In a first step, we show that, given event w € Q, realization Z;(w) is unique with probability

one. To do this, introduce initial condition z, for £ > 1 such that z, € Z and ||z|| < 0.
Define

Zt(—e) (W) = GO (yo, e—p1:4(w)).
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Further, let Z /(=0) be the realization with initial condition 2’ =+ 2z, and innovation realiza-
) t o

tions €;_¢11.+(w). Note that
|27 (w) - 270 w)| < Chllze 2],

which goes to zero as £ — oo. Therefore, if we set Z;(w) = limy_,q Zt(fe) (w), Zt(w) is

unique with respect to the choice of z, w.p.1. A similar recursion shows that
o -1
- ¢ k
|29 < Chllzell + 3 ChCeller il
k=0
By norm equivalence, this implies

—
|267],, < el + 3 CAC eoals
k=0

< Cy ol + (1= Cz) ™' Cesupller]r < o0,
teZ
and taking the limit £ — oo proves the claim.

(b) Consider again distinct initial conditions z/ # z, and innovation realizations €;_g41.4(w),
yielding Z;(—e) (w) and Zt(_g) (w), respectively. We may use the contraction bound derived
in the proof of Proposition 3.1 (b) below, that is,

| 270 @) - 270 w) |, < 4llze — 2Ll

where Cy > 0 is a constant. With trivial adjustments, the uniqueness and limit arguments

used for (a) above apply here too.

Proof of Proposition 3.1.
(a) By assumption it holds that for all (z,2') € Z x Z and (e,e’) € E x €

IG(z,€) = G, €] < Czllz = 'l + Celle — €]

holds, where 0 < Cz < 1 and 0 < C, < 00. The equivalence of norms directly generalizes
this inequality to any r-norm for r > 2. We study || Z;1,—Z;, || where Z]  , is constructed
with a time-t perturbation of the history of Z; .. Therefore, for any given ¢ and h < 1 it
holds that

H Zivn — GW(ZL, eri1an) HT < |G (Z eririin) — G (2L erirrn) |

h !
< Cz11Zy = Zi|r,
since sequence €;y1.445 is common between Z;,, and Z{ +p- Clearly then

| Zevn = G2 evrenn) |, < 201l exp(—h)
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for v = —log(Cyz). Letting a = 2||Z||, and shifting time index ¢ backward by h, since
sup,||Z¢||z» < o0 w.p.1 from Lemma B.1 the result for L" follows with 7 = 1.

(b) Proceed similar to (a), but notice that now we must handle cases of steps 1 < h < h*.
Consider iterate h* + 1, for which

H Ztrht1 — G(h+1)(Z£, €t+1:t+h+1) HT < CZHG(h)(G(Zt, €41), €102:04n) — G(h)(G(Zg, ecit)s errainn)lr
C%HG(ZMEYHJ) - G(Zé76t+1)||r
< ChMz| 2~ Z»

A

by the mean value theorem. Here we may assume that Mz > 1 otherwise we would fall
under case (a), so that Mz < M%Z < ... < Mg*_l. More generally,

. )
| Zenir = G Z i) || < € max(M 112 21,

for j(h) := |h/h*|. Result (b) then follows by noting that j(h) = h/h* — 1 and then

proceeding as in (a) to derive GMC coefficients.

O

Companion and Lagged Vectors. The assumption of GMC for a process translates natu-
rally to vectors that are composed of stacked lags of realizations. This, for example, is important
in the discussion of Section 3 when imposing Assumption 9, since one needs that series regressors
{Way ez, be GMC.
Recall that Woy = (X4, Xy—1,..., X4—p, Yi1,...,Yi—p, €11). Here we shall reorder this vector
slightly to be
Wor = (X¢, Xo—1, Yee1, -, Xi—p, Yip, €11).

For h >0and 1 <1 < h, let Z£+j = oWzl .. s Zi_p; €t41:+5) be the a perturbed version of

Zy, where Z,, ..., Z,_ are taken from an independent copy of {Z;}icz. Define

p

/ / / ! / /
Woye = (X4, X1, Y 1o Xi 0, Yo en).

Using Minkowski’s inequality

P
Waein = Wi nller < 1 Xeen = Xpgnllor + D1 Zesn—g = Zian—slize
j=1

P
< DM Zesn—j — Zisnjllor,
j=0
thus, since p > 0 is fixed finite,
P
SItlpHWQHh — W2/t+hHLT < Z Ay(h—j) < (p+1)aizexp(—azzh).
j=0

Above, a1z and asy are the GMC coefficients of {Z;}ic7.
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B.2 Lemma 3.1 and Matrix Inequalities under Dependence

In order to prove Lemma 3.1, the idea is to modify the approach of Chen and Christensen (2015),
which relies on Berbee’s Lemma and an interlaced coupling, to handle variables with physical
dependence. Chen et al. (2016) provide an example on how to achieve this when working with
self-normalized sums. In what follows I modify their ideas to work with random dependent

madtrices.

First of all, I recall below a Bernstein-type inequality for independent random matrices of
Tropp (2012).

Theorem B.1. Let {Z;}7 ;| be a finite sequence of independent random matrices with dimensions

dy x dy. Assume E[Z;] = 0 for each i and maxi<i<n||Zi|| < Ry, and define

" —22/2
( g ) (s da) ey <nqc% + q/an/3> ’

The main exponential matrix inequality due to Chen and Christensen (2015), Theorem 4.2

n

2B [Ein)]

n

Z I [ELNE]:n]

i=1

Y

Then for all z =0

is as follows.

Theorem B.2. Let {X;}icz where X; € X be a B-mizing sequence and let Z; , = Z,(X;) for
each i where Z,, : X — RN*% be ¢ sequence of measurable di x do matriz-valued functions.
Assume that E[Z;,] = 0 and ||Z;,|| < Ry, for each i and define

S2 .= max {E[ = nuj,nH] [HE;,nEJ,nH]} :

Let 1 < g < n/2 be an integer and let Is = q|n/q|,...,n when q|n/q] < n and I, = & otherwise.

Then, for all z =0
6z> < gﬁ(q) + P <

]P (
i=1
where || e, Einll := 0 whenever Iy = .

—_
— .
—,n

i€le

n
—_
—
—n

—22/2
=z +2(d1—|—d2)exp nq5'2+qR 2/3 ,

To fully extend Theorem B.2 to physical dependence, I will proceed in steps. First, I
derive a similar matrix inequality by directly assuming that random matrices =;,, have physical

dependence coefficient AZ(h). In the derivations I will use that

1

@y 14l < 1412 < ()21 Al

for r = 2.
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Theorem B.3. Let {¢;};ez be a sequence of i.i.d. variables and let {Z; ,}7_,

Ei,n = GE( ey €61, 6i)

for each i, where Z,, : X — RU1>*% be q sequence of measurable dy x dy matriz-valued functions.
Assume that E[Z; ] = 0 and ||Z; || < Ry, for each i and define

Sz :=max {E|| EinZinll] EIZE5mll]} -

Additionally assume that |Z;,| L < o for r > 2 and define the matriz physical dependence
measure AZ(h) as

AZ(h) ;= max HE — mh
( ) 1<i<n 7,m 7,M

9

LT
where Ei’;“l = Go(o € 1 € €imht1s - - -5 €1, €) for independent copy {ei}jen. Let1 < q <
n/2 be an integer and let Is = q|n/q|,...,n when q|n/q| < n and I, = & otherwise. Then, for
all z = 0,

P n 6 nr-i—l A: P ol 4 _22/2
Sinl| =62 < ————— AZ 2l > ,
Z-; o : q"(dg)/2= 1z r(a)+ l; || = 2 | +2(dtdy) exp <nqS%+anz/3>
where ||Y;cr, Einll := 0 whenever I, = .

Proof. To control dependence, we can adapt the interlacing block approach outlined by Chen

et al. (2016). To interlace the sum, split it into

n
ZE@TL = Z Jk"r Z Wk"l‘ ZEi,n’
=1

jeK. jedo i€le

where W; := Z;‘Jiq(]‘—l)-i-l Ein for j =1,...,|n/q| are the blocks, I, := {q|n/q] +1,...,n} if
q|n/q] < n and J. and J, are the subsets of even and odd numbers of {1, ..., |n/q|}, respectively.
For simplicity define J = J. u J, as the set of block indices and let

W i=E[Wle, q(j—2) +1<<qj].

Note that by construction {W]T }jes. are independent and also {W; }jes, are independent. Using
the triangle inequality we find

1P< ian >6z> <]P( M —wh+ DIwl +]D] Ein >6z>
=1 jed jed i€le
<]P( Mw; - w)) >z> +IP< Sw) >z>
jed JEJe

+]P< > W) >z>+1P< >, Ein >z)
J€Jo i€le
= I+ I1+IIT+1V.
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We keep term IV as is. As in the proof of Chen and Christensen (2015), terms 11 and II]

consist of sums of independent matrices, where each I/V]T satisfies ||WJTH < ¢R, and

n

max {B | |W] wl'|| B [Iw] w]i]} < as2.

Then, using the exponential matrix inequality of Tropp (2012),

]P(ZW,I >z><(d1+d2)exp( —2/2 )

= ngS2 + qRy,z/3
The same holds for the sum over .J,. Finally, we use the physical dependence measure AZ to
bound I. Start with the union bound to find

IP( >z><]P(ZHWj—WJTH>z>
JjeJ

N S
q n
where we have used that |n/q| < n/q. Since W} and VVjT differ only over a o-algebra that is ¢

> (W= w))

jedJ

steps in the past, by assumption

wi - wj|

L S aAT(a),

which implies, by means of the rth moment inequality,

r

q n
= =z

) <
r n qr—l(d2)r/2—1zr

P (|w;-wl| = %Z> <P (@2 Wy - w)

where (d2)/"~1/2 is the operator norm equivalence constant such that ||-|| = (d2)V"~V2||-||,
(Feng, 2003). Therefore,

4

as claimed. O

DW= w))

jed

nr+1 -
>z < AR ()

Notice that the first term in the bound is weaker than that derived by Chen and Christensen
(2015). The S-mixing assumption and Berbee’s Lemma give strong control over the probability
P (1|26, (W — WJT) | = z). In contrast, assuming physical dependence means we have to explic-
itly handle a moment condition. One might think of sharpening Theorem B.3 by sidestepping
the rth moment inequality (c.f. avoiding Chebyshev’s inequality in concentration results), but
I do not explore this approach here.

The second step is to map the physical dependence of a generic vector time series {X}iez

to matrix functions.

Proposition B.1. Let {X;}icz where X; = G(...,€i—1,€) € X for {€j}jez i.i.d. be a sequence
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with finite rth moment, where r > 0, and functional physical dependence coefficients

7

Ay (h) = sgp H Xivn — G (X, €it1:ian) ‘ I

for h = 1. Let Z;, = E,(X;) for each i where E,, : X — R4z be o sequence of measurable

dy x dy matriz-valued functions such that Zy, = (vi,...,vq,) for v € R, If |Zinllr < oo and

Oz = sup|| Vuy(a)|| < C= < oo,
reX

then matrices Z; , have physical dependence coefficients

AF(h) = sup || 2,0 — 21
7

LT

where Eﬁ’; = En(G(h) (X[, €it1:04n))-

hs

Proof. To derive the bound, we use =, (X;) and En(Xf*) in place of E;,, and E}', respectively,

where XM = el (X[, €it1:4n). First we move from studying the operator r-norm (recall,

r > 2) to the Frobenius norm,

|20 — 20| < (@2)V2 1 |[20(X0) — Za(XE")

’F'

where as intermediate step we use the 2-norm. Let E, = (v1,...,vq,) for vy € R% and ¢ €
1,...,ds, so that
do
= — 2
IZnllp = o | D llvel
=1
where vy = (vg1,...,vpq,)". Since vy : X — R% are vector functions, the mean value theorem

gives that

En(Xz) - En(th*)

do
< 02 1~ X < iy Om X, - X,
=1

Combining results and moving from the vector r-norm to the 2-norm yields

|Ea(x) - Ea ()

| < (do)! T (dn) 2 O X — X
The claim involving the L™ norm follows immediately. O

The following Corollary, which specifically handles matrix functions defined as outer prod-

ucts of vector functions, is immediate and covers the setups of series estimation.

Corollary B.1. Under the conditions of Proposition B.1, if

En(Xi) = &n(Xi)&n(Xi) + Qn
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where &, : X — R is a vector function and Q,, € R¥? is nonrandom matriz, then

AT (h) < d**727 Ce A (h),

where Cg 1= sup,cy|| V&, (2)| < oo.

Proof. Matrix Q,, cancels out since it is nonrandom and appears in both Z,(X;) and =, (X}*).

Since E,(X;) is square, the ratio of row to column dimensions simplifies. ]
The following Corollaries to Theorem B.3 can now be derived in a straightforward manner.

Corollary B.2. Under the conditions of Theorem B.3 and Proposition B.1, for all z =0
P ( Z Ei,n = Z>

i€le
where A,(+) if the functional physical dependence coefficient of X;.

n

—
=
—i,n

T ~T
i=1 7z

r+1
> 6z) < B (d)> O () 2 Cs A (g) + P (

—22/2
+ 2(dy + dg) exp <nqS,% n anz/3> .

Corollary B.3. Under the conditions of Theorem B.3 and Proposition B.1, if ¢ = q(n) is chosen

such that

nr+1

(do) 2= /2 ()27 02 AL (g) = (1)

r

and Ry+/qlog(dy + d2) = o(Sp+/n) then

3 Zin| = Op (S/nalog(ds + &)

i=1

This result is almost identical to Corollary 4.2 in Chen and Christensen (2015), with the only
adaptation of using Theorem B.3 as a starting point. Condition R,+/qlog(dy + d2) = 0o(Sp/n)
is simple to verify by assuming, e.g., ¢ = o(n/log(n)) since log(d; + d2) < log(K) and K = o(n).

Note that when d; = do = K, which is the case of interest in the series regression setup, the

first condition in Corollary B.3 reduces to
K5/27(r/2+2/r) CE AT(Q) _ 0(1)7

which also agrees with the rate of Corollary B.1. Assumption 7(i) and a compact domain further

allow to explicitly bound factor C= by
CE < sz:
so that the required rate becomes

K?A,(q) =o(1), where p:= g 3 + wa.
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Proof of Lemma 3.1. The proof follows from Corollary B.3 by the same steps of the proof of
Lemma 2.2 in Chen and Christensen (2015). Simply take =; ,, = nil(fb)K(Xi)Zb)K(Xi)’ — Ixg)

™ K

and note that R, < n !(1 + CKn)\Kn) and S, < n2(1 + C%(7n)\%(7n). O
For Lemma 3.1 to hold under GMC assumptions a valid choice for ¢(n) is
q(n) =5~ log(K ")

where 7 as in Proposition 3.1. This is due to

n r+1 nrtl
(q) qK’A(q) € —— K" exp(—q)

q
K
< KP r+1y—1
~ log(KPnr+1)7”( w)
1
. ——e
log(KPnr+1)r o(1)

Note then that, if A, <1 and (xn < VK, since

o \/qlogK Klog(Krnm+1)log(K \/Klog (nPtr+2)log(n \/Klog

n

to satisfy Assumption 8 we may assume 4/K log(n)?/n = o(1) as in Remark 2.3 of Chen and

Christensen (2015) for the case of exponential S-mixing regressors.

B.3 Theorem 3.2

Before delving into the proof of Theorem 3.2, note that we can decompose ﬁ2 — 1 as
ﬁQ -1l = (ﬁg — ﬁ;) + (ﬁ; — ﬁg) + (ﬁQ — Hg),

where II, is the projection of Ils onto the linear space spanned by the sieve. The last two terms
can be handled directly with the theory developed by Chen and Christensen (2015). Specifically,
their Lemma 2.3 controls the second term (variance term), while Lemma 2.4 handles the third
term (bias term). This means here we can focus on the first term, which is due to using generated
regressors €1; in the second step.

Since Ils can be decomposed in dy rows of semi-nonparametric coefficients, i.e.,
2,1
Yi=| | Wa+ay,
7r27dY
we further reduce to the scalar case. Let w2 be any row of Iy and, with a slight abuse of notation,

Y the vector of observations of the component of Y; of the same row, so that one may write

Ralw) - #5(2) = VY () (BLB) Br) - (BB | By
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=I+1I

where bX (z) = F;Q/ 2b,rK (z) is the orthonormalized sieve according to I'p 5 := E[bX (W )bE (Way)'],

EW is the infeasible orthonormalized design matrix (involving €;;) and éw is feasible orthonor-

malized design matrix (involving €1;). In particular, note that

0 0 €1 —en
éﬁ =B, + R, where R,:=|: ... : : e R™K
0 0 € —e€n
which implies B — B =R, 'y 1/2 }Nin

The next Lemma provides a bound for the difference (B.By/n) — (B.By/n) that will be

useful in the proof of Theorem 3.1 below.

Lemma B.2. Under the setup of Theorem 5.1, it holds

x/n) — (EQEW/H)H = Op(/K/n).

oo

[[ez4

~  ~ ~ ~

Proof. Using the expansion B, B, = BB
that

N
_l’_
w
:‘\
=
3
_|_
=0
o™,
o

+ R, R, one immediately finds

(B Br/n) — (By.Br/n)|| < 2|| By Ro/nl + || B}, Ra/n].

The second right-hand side factor satisfies ||]3L;1}~Zn/n|| < )\%(mHR;ZRn/nH. Moreover,

1.
I = [ 3360 ]

1 ~
52 — 0y Wy, W, (I — 1))

< [Tty — T Wi /n|
= Op(nfl),

since ||[W{Wi/n|| = Op(1). Under Assumption 12, )\%(n/n = op(1/K/n) since B-splines and
wavelets satisfy Ag,, < 1. Consequently, H]?E'n]sbn/nH = op(+/K/n).

Factor || B.R,,/n| is also straightforward, but depends on sieve dimension K,

n
1By R /| < Z (War) (€1t — €1t)

1 & .
EZ (Way) W1, (T — TIy)

< [ty = 0 ||| B W /|
= Op(v/K/n),

since || B.W/n|| = Op(v/K) as the column dimension of Wj is fixed. The claim then follows by
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noting Op(+/K/n) is the dominating order of convergence.

Proof of Theorem 3.2. Since ﬁl the least squares estimator of a linear equation, the rate of

convergence is the parametric rate n=%/2. The first result is therefore immediate.

and bound explicitly the first right-hand side term. For a given component of the regression

For the second step, we consider

T, — || < [T — 05|, + |15 — 0|,

function,

|Ta(x) — 75 (x)| < |I| + |11

We now control each term on the right side.

(1)

It holds

1 < BE @) || (BLBafn) || (Be — Ba)'Y /]

< sup [B5 (@) || (B Br/n) || |(Bx = Bx)'Y /|
xeEW?

< Chen i | (B Bo/m) || (Br — Br)'Y .

Let A, denote the event on which ||§;§,,/n — Ix| < 1/2, so that ||(§;r§,,/n)_|| < 2on
A,. Notice that since ||(B.By/n) — (B.Bx/n)|| = op(1) (Lemma B.2) and, by assumption,

|B.By/n — Ix| = op(1), then P(AS) = o(1). On A, then
115 CienNicn | (Br = Br)'Y /|| = G | BLY /]
From R,Y = Y7 bK (War) (€1 — e1)Y: = (I, — [’ W]Y it follows that
1RY /n]| < [T — T [W7Y /n]|

on A,, meaning
1| = Op (Cxn i/ V)
as |[WiY /n|| = Op(1) and P(AS) = o(1).

Again we proceed by uniformly bounding I1 according to

11| < Cindicn | (B Br/n) ™ = (BiBx/n) " ||| BrY /n].

The last factor has order | BLY /n|| = Op(v/K) since By is growing in row dimension with

K. For the middle term, introduce

Ap:= B.B,/n— B.B,/n
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and event
B = {(BBu/n)” Anll < 1/2} o {145 /n — I < 1/2).
On B,,, we can apply the bound (Horn and Johnson, 2012)

|(By Br/n)~|I* A
1= [[(B7Bx/n)~ Agl|

|(BBa/n)” — (ByBe/n) || < < 1By Befn— By Bo/nl).

Since ||B.By/n — B.Bx/n|| = Op(y/K/n) by Lemma B.2, we get

K
|II| = Op <CK,n>\K,n\/H>

on B,. Finally, using P((A n B)¢) < P(A°) + P(B°) we note that P(Bf) = o(1) so that

the bound asymptotically holds irrespective of event B,,.

Thus, we have shown that

Fale) — A3 (2)| < Op (cK,nA%(,njﬁ) 0 (cK,nAK,nfﬁ)
=0Op (CK,n)\K,nj{ﬁ>

as clearly v/n~ ! = o(K /y/n) and, as discussed in the proof of Lemma B.2, )\%(n/n = op(+/K/n).
This bound is uniform in x and holds for each of the (finite number of) components of ﬁg,

therefore the proof is complete. O

B.4 Theorem 4.1

Before proving impulse response consistency, I show that compositions of the model’s autore-
gressive nonlinear maps are also consistently estimated at any fixed horizon. This means that
the “functional moving average" coefficient matrices I'; involved in Proposition 4.1 can be con-

sistently estimated with ﬁl and ﬁg.

Lemma B.3. Under the assumptions of Theorem 3.2 and for any fized integer j = 0 it holds
I = Tjlleo = 0op(1).

Proof. By definition, recall that T'(L) = ¥(L)G(L) where ¥ = (I; — A(L)L)~*. Since (L) is
an MA (o) lag polynomial, we have that

o]
(L) = (Z \IlkLk> (Go + G1L + ... + G,LP),
k=0

where Wg = 14, {¥}L, are purely real matrices and Gy is a functional vector that may also

contain linear components (i.e. allow linear functions of X;). This means that I'; is a convolution
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of real and functional matrices,
min{j, p}

DI Zves

The linear coefficients of A(L) can be consistently estimated by ﬁl and ﬁg, and thus plug-in
estimate \’I\fj is consistent for W; (Liitkepohl, 2005). Therefore,
min{j, p}

IT; =Tyl < 2 H‘I’J—kG’f - (I\lj_kékHoo
k=1

min{j, p} R N R
< 2 e T Gl + [Eii] e - G
k=1
min{j, p}
< 0p(1)Car + Op(1)o,(1)
k=1
= 017 1)7

where C i, is a constant and |G}, —ék]]oo = 0p(1) as a direct consequence of Proposition 3.2. [

Note. Since we assume that the model respects either contractivity or stability conditions,
the impulse responses must decay (eventually) exponentially fast to zero. This means that by

“stitching” bounds appropriately, one should also be able to achieve convergence uniformly over
h=0,1,...,00

Recall now that the sample estimate for the relaxed-shock impulse response is

— n h
IRF0(8) = ©p.16n"" Y p(ew) + Y, Viu(6)
=0

t=1

where

A~

J,L’

Xt+j it 5t =

[ i Xt+]t,5t) Fth+j:|'

Therefore, the estimated horizon A impulse response of the ¢th variable is

— n n—j
IRFh’g((S) = @hﬂé n~t Z Elt + Z [ Z vj, g(XH_] -t5 (575)]
t=1

t=1

Lemma B.4. Under the assumptions of Theorem j.1 , let xj.0 = (2j,...,%0) € X7 and € € &

be nonrandom quantities. Let 5 be the relazed shock determined by 6, p and €. Then
(i) sup, 1 (2j:050) — v(2j:0:0)] = op(1) ,
(i) sup,, |9.¢(5:050) — vie(25:0:0)|= 0p(1) ,

for any fized integers j = 0 and £ € {1,...,d}.

Proof.

61



(i) From Proposition 4.1, we have that

J
Yj(j.0;6) = xj + ©;110p(e) Z NSRRI k(0 —Tenzj—k),
k=1
thus
‘7 ~ ~

1 (501 8) = v (501 0)| = | Y] [ Tr112j-,(0) — T 1) — (Tra12j-1(0) — Fk,nxj—k)]

k=1

j i

Z ’ 1105 k(8) — T 1Tj—k( )‘ + Z ‘Fk,lltxjfk - Fk,llxjfk‘ :

k=1 =1

This yields
sup |;(xj:0;9) — v (xj.056)| <24 sup [Ty nix — Fk,nu’v‘ .

Tj.0,€ zeX

Since j is finite and fixed and the uniform consistency bound of Lemma B.3 holds, a fortiori

SUPgex ‘fk,llw - Fk,nx‘ = Op(l).
(ii) Similarly to above,
|6j,€ (wj:03 6) — it (x‘j:()’ )‘ - ‘ < Js [Y] (.’L'] 05 5) F]',[Yj (‘Tj:O; 5)) — (ijafj - Fj,él‘j) ‘
s ”FM — Tjelloo + 1T elloo 7 (25:0; 8) — v5(25:05 0|
+ [Ty — Uy

< 2|00 = Tjelleo + Crja V5(25:050) — 5 (25:0; )1,

where we have used that v;(z;.0; 5~) e X to derive the first term in the second line. In the
last line, Cr j; is a constant such that
min{j, p}
ITicllo < X 1% kllollGlloo < Crja-
k=1

The claim then follows thanks to Lemma B.3 and (i).
U

In what follows, define v, (Xt+j;t; St) to be a version of v; that is constructed using coef-

ficient estimates from {ﬁl, ﬁg} but evaluated on the true innovations ¢;.

Proof of Theorem 4.1. If we introduce

ﬁh’g(d)* = éh,ﬂé nt Z p(elt) + Z 2 Xt+] it 51&)
=1 =0 t=1
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then clearly
IRE), (6) — IR (5)| < |RE(6) — RE, ()] + [[RE, (6) — RF,0)
=1+1I.

To control 11, we can observe

n
II < @h,h(s n_l 2 p(ﬁlt) — @h,fléE[p(Elt)]‘
t=1
n| g ned X )
’ JZO neJia 030 (Xejus 00) = Blogie (X3 0)]

+6’@h€1‘

Z €1t Z €1t Elt)]’
Z .0 (Xe4j. t,5t) E[vj,Z(Xt-&-j:t;g)]

Z €1) DIICHE ]E[P(€1t)]|
= =1

<5‘éh,€1 _@h,él) +5‘®h£1‘

'M?

+ o (Xigjots 5t) 0,0 (Xigjuts gt)
J=0 t=1
h _ ~,
+ Z 5t) Elvje (Xt+j:t§ 5)] .
=" T i=

The first two terms in the last bound are op(1) since ‘éh,ﬁl — @h,m’ = op(1), as discussed in

Lemma B.3, and n=' 37, p(e1r) 2> E[p(e1r)] by a WLLN. For the other terms in the last sum
above, we similarly note that

‘ Z Xt—i-j it 5t) - U]é(Xt-H t,5t) = OP(1)
from Lemma B.4, while thanks again to a WLLN it holds
1 ' ~
7] Z U] K(Xt+] ) 6t) ]E[’Ujj (Xt+j:t§ 6)] = Op(l).
t=1

Since h is fixed finite, this implies that 1 = op(1).

Considering now I, we can write

3 @) - plerr)
t=1

<3 |Ona||n

Z Xt+] it 5t) @‘,e (Xt+j:t; 5~t)

h
+2. |-
i—o|™

=I+1T1".
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Since by assumption p is a bump function, thus continuously differentiable over the range of €,

by the mean value theorem

n
Z €1t €1t)

for a sequence {p;}}_; of evaluations of first-order derivative p’ at values & in the interval with

n
<nt Z!pg! |1 — €1
t=1

endpoint € and &. One can use |p;| < Cy with a finite positive constant C,, and by recalling
that €, — ey = (II; — ﬁl)’Wlt one thus gets
-1

n p(€wr) — p(er)

NgE

1 & ~ s~ 1
< Gy 20| = T Wi < Gy = Tyl = 33 [Waell2 = 0p(1).
t=1 t=1

t

Il
—

This proves that term I’ is itself op(1). Finally, to control I”, we use that by construction
estimator ﬁz is composed of sufficiently regular functional elements i.e. B-spline estimates of
order 1 or greater. Thanks again to the mean value theorem

op

Z (X450 t,5t) - ﬁj,é(XtJrj:t;(st <

0j 0 (Xtsj: t75t) — 6j,e(Xt+j;1;;gt)

1
< Cy g . Z |€10 — exe]
n—Ji3

for any fixed j and some Cy ;, > 0. This holds since v, is uniformly continuous by construc-
tion. Note that we have assumed that the nonlinear part of IIy belongs to a Holder class with
smoothness s > 1 (for simplicity, assume here that s is integer, otherwise a similar argument can
be made). Then, even though Cy ;, depends on the sample, it is bounded above in probability
for n sufficiently large. Following the discussion of term I’, we deduce that the last line in the
display above is o,(1). As h is finite and independent of n, it follows that also I” is of order
op(1). O
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C Additional Plots
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Figure 8: Simulation results for DGP 2’ when considering @ in place of ¢.
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Figure 9: Estimated nonlinear regression functions for the narrative U.S. monetary policy vari-
able. Contemporaneous (left side) and one-period lag (right side) effects are shown, linear and
nonlinear functions. For comparison, linear VAR coefficients (dark gray) and the identity map
(light gray, dashed) are shown as lines.
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Figure 10: Comparison of histograms and shock relaxation function for a positive (left) and
negative (right) shock in monetary policy. Original (blue) versus shocked (orange) distribution
of the sample realization of €1;. The dashed vertical line is the mean of the original distribution,
while the solid vertical line is the mean after the shock.
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Figure 11: Robustness plots for U.S. monetary policy shock when changing knots compared to
those used in Figure 6. Note that linear and parametric nonlinear responses do not change.
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Figure 12: Relative changes in the GDP impulse responses function when the size of the shock is
reduced from that used in Figure 6. The standard deviation of X; = €1; is 0.1 ~ 0.5972. Linear
IRFs are re-scaled such that for all values of ¢ the linear response at h = 0 is one in absolute
value. Nonlinear IRFs are re-scaled by § times the linear response scaling factor.
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Figure 13: Estimated nonlinear regression functions for the 3M3M subjective interest rate un-
certainty measure. One-period (left side) and two-period lag (right side) effects are shown,
combining linear and nonlinear functions. For comparison, linear VAR coefficients (dark gray)
and the identity map (light gray, dashed) are shown as lines.
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Figure 14: [Top| Histograms and shock relaxation function for a one-standard-deviation shock
in interest rate uncertainty. Original (blue) versus shocked (orange) distribution of the sample
realization of €. The dashed vertical line is the mean of the original distribution, while the
solid vertical line is the mean after the shock. [Bottom] Envelope (min-max) of shocked paths

for one-standard-deviation impulse response.

71



-4
6t
8t
10+ - = Li.near
Sieve
-12 ; ; '
0 20 40 60
Quarters
6 =0.75 x O¢,1

0 20 40 60
Quarters

§=0.25% 0,4

0 20 40 60
Quarters

Figure 15: Relative changes in the industrial production impulse responses function when the
size of the shock is reduced from that used in Figure 7. The standard deviation of = €4 is
0c1 ~ 0.0389. Linear IRFs are re-scaled such that for all values of § the linear response at h = 0
is one in absolute value. Nonlinear IRFs are re-scaled by § times the linear response scaling

factor.
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Figure 16: Relative changes in the CPI impulse responses function when the size of the shock
is reduced from that used in Figure 7. The standard deviation of = €14 is 0¢,;1 ~ 0.0389. Linear
IRFs are re-scaled such that for all values of ¢ the linear response at h = 0 is one in absolute
value. Nonlinear IRFs are re-scaled by § times the linear response scaling factor.
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